当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将沿AF折起,得到如图所示的三棱锥,其中....
题目
题型:不详难度:来源:
如图,在边长为1的等边三角形ABC中,DE分别是ABAC边上的点,AD=AEFBC的中点,AFDE交于点G,将沿AF折起,得到如图所示的三棱锥,其中.

(1) 证明://平面;
(2) 证明:平面;
(3)当时,求三棱锥的体积
答案
(1)详见解析;(2)详见解析;(3)
解析

试题分析:(1)要证线面平行,我们可以转换为线线平行来证明;(2)要证明线面垂直,我们一般都转化为线线垂直来证明;(3)当求三棱锥的体积困难时,我们可以考虑利用顶点转换来解决.
试题解析:(1)在等边三角形中,,在折叠后的三棱锥
也成立, ,平面平面平面;
(2)在等边三角形中,的中点,所以①,.
 在三棱锥中,
;
(3)由(1)可知,结合(2)可得

核心考点
试题【如图,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将沿AF折起,得到如图所示的三棱锥,其中.】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
如图,已知四棱锥,底面是等腰梯形,
中点,平面
中点.

(1)证明:平面平面
(2)求平面与平面所成锐二面角的余弦值.
题型:不详难度:| 查看答案
如图,已知平面四边形中,的中点,
.将此平面四边形沿折成直二面角
连接,设中点为

(1)证明:平面平面
(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由.
(3)求直线与平面所成角的正弦值.
题型:不详难度:| 查看答案
如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.
题型:不详难度:| 查看答案
如图,四棱锥的底面为正方形,侧面底面为等腰直角三角形,且分别为底边和侧棱的中点.

(1)求证:∥平面
(2)求证:平面
(3)求二面角的余弦值.
题型:不详难度:| 查看答案
在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,

(1)求证:BC平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角E-BD-P的余弦值为
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.