当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图,四棱锥的底面为正方形,侧面底面.为等腰直角三角形,且.,分别为底边和侧棱的中点.(1)求证:∥平面;(2)求证:平面; (3)求二面角的余弦值....
题目
题型:不详难度:来源:
如图,四棱锥的底面为正方形,侧面底面为等腰直角三角形,且分别为底边和侧棱的中点.

(1)求证:∥平面
(2)求证:平面
(3)求二面角的余弦值.
答案
(1)详见解析;(2)详见解析;(3)所以二面角的余弦值为
解析

试题分析:(1)求证:∥平面,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,注意到的中点,取的中点,连接,则所以是△的中位线,证得四边形是平行四边形,从而得,从而可证∥平面;(2)求证:平面,可用空间向量法,注意到平面平面,可以点为原点,分别以轴,建立空间直角坐标系,由题意设,则的各点坐标,从而得,利用数量积得,从而得证;(Ⅲ)求二面角的余弦值,由(2)建立空间直角坐标系,可设平面的法向量为,求出一个法向量,由(2)可知平面的法向量是,利用向量的夹角公式,即可求得二面角的余弦值.
试题解析:(1)取的中点,连接.
因为分别是的中点,
所以是△的中位线. 所以,且
又因为的中点,且底面为正方形,
所以,且.所以,且
所以四边形是平行四边形.所以
平面平面,所以平面.                 4分

(2)证明:因为平面平面
,且平面平面
所以平面
所以
又因为为正方形,所以
所以两两垂直.
以点为原点,分别以轴,
建立空间直角坐标系(如图). 
由题意易知,   设,则
,,
因为

所以
又因为相交于,所以平面.          9分

(3)易得
设平面的法向量为,则
,所以
,则
由(2)可知平面的法向量是
所以 .
由图可知,二面角的大小为锐角,
所以二面角的余弦值为.          14分
核心考点
试题【如图,四棱锥的底面为正方形,侧面底面.为等腰直角三角形,且.,分别为底边和侧棱的中点.(1)求证:∥平面;(2)求证:平面; (3)求二面角的余弦值.】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,

(1)求证:BC平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角E-BD-P的余弦值为
题型:不详难度:| 查看答案
如图,四棱锥中,底面为平行四边形,⊥底面
 
(1)证明:平面平面
(2)若二面角,求与平面所成角的正弦值.
题型:不详难度:| 查看答案
已知三棱柱平面,四边形为正方形,分别为中点.
(1)求证:∥面
(2)求二面角的余弦值.
题型:不详难度:| 查看答案
关于坐标原点对称的点是( )
A.(-2,3,-1)B.(-2,-3,-1)C.(2,-3,-1)D.(-2,3,1)

题型:不详难度:| 查看答案
如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,DAC中点,,延长AEBCF,将ABD沿BD折起,使平面ABD平面BCD,如图2所示.

(1)求证:AE⊥平面BCD
(2)求二面角A–DC–B的余弦值.
(3)在线段上是否存在点使得平面?若存在,请指明点的位置;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.