当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图,已知的直径,点、为上两点,且,,为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).(1)求证:;(2)在弧上是否存在点,使得平面?若存在,试...
题目
题型:不详难度:来源:
如图,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(1)求证:
(2)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(3)求二面角的正弦值.
答案
(1)证明过程详见解析(2)在弧上存在点,且点为弧的中点;(3)
解析

试题分析:(1)连结CO,则CO⊥AB,证明∠FOB=∠CAB,从而得出OF∥AC;(2)找出弧BD的中点G,证明OG∥AD,由(1)知,OF∥AC,先证明线面平行,在证明面面平行;(3)用三垂线法作出二面角C-AD—B的平面角,再通过解三角形,求出二面角平面角的余弦值,或建立空间直角坐标系,利用向量法证明平行和求二面角.
试题解析:(法一):证明:(1)如右图,连接

为弧的中点,
(2)取弧的中点,连接
,故
由(1),知平面,故平面平面
平面,因此,在弧上存在点,使得平面,且点为弧的中点.
(3)过,连
因为,平面平面,故平面
又因为平面,故,所以平面
是二面角的平面角,又,故
平面平面,得为直角三角形,
,故,可得==,故二面角的正弦值为.
(法二):证明:(1)如图,以所在的直线为轴,以所在的直线为轴,以为原点,作空间直角坐标系



为弧的中点,的坐标为
,即
(2)设在弧上存在点,使得平面
由(1),知平面平面平面,则有
.又
,解得(舍去).,则为弧的中点.
因此,在弧上存在点,使得平面,且点为弧的中点.
(3)的坐标
设二面角的大小为为平面的一个法向量.

,解得,取平面的一个法向量
,故二面角的正弦值为.
核心考点
试题【如图,已知的直径,点、为上两点,且,,为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).(1)求证:;(2)在弧上是否存在点,使得平面?若存在,试】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且.

(1)求证:
(2)若异面直线所成的角为,求平面与平面所成的锐二面角的余弦值.
题型:不详难度:| 查看答案
如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.

(1)求证:DA1ED1
(2)若直线DA1与平面CED1成角为45o,求的值;
(3)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).
题型:不详难度:| 查看答案
如图,四棱锥的底面是正方形,侧棱底面,过垂直点,作垂直点,平面点,且.

(1)设点上任一点,试求的最小值;
(2)求证:在以为直径的圆上;
(3)求平面与平面所成的锐二面角的余弦值.
题型:不详难度:| 查看答案
如图,等腰梯形ABCD,AD//BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,.

(1)证明:
(2)求二面角A-BP-D的余弦值.
题型:不详难度:| 查看答案
在长方体ABCDA1B1C1D1中,,点E是棱AB上一点.且

(1)证明:
(2)若二面角D1ECD的大小为,求的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.