当前位置:高中试题 > 数学试题 > 平面向量应用举例 > 已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i.(1)求点C,D对应的复...
题目
题型:不详难度:来源:
已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i.
(1)求点C,D对应的复数.
(2)求平行四边形ABCD的面积.
答案
(1)4-2i    5
(2)7
解析
(1)设点O为原点,因为向量对应的复数为1+2i,向量对应的复数为3-i,
所以向量对应的复数为(3-i)-(1+2i)=2-3i,
=+,
所以点C对应的复数为(2+i)+(2-3i)=4-2i.
=+=(1+2i)+(3-i)=4+i,
=-=2+i-(1+2i)=1-i,
所以=+=1-i+(4+i)=5,
所以点D对应的复数为5.
(2)由(1)知=(1,2),=(3,-1),
因为·=||||cosB,
所以cosB===,
所以sinB=,
又||=,||=,
所以面积S=||||sinB=××=7.
所以平行四边形ABCD的面积为7.
核心考点
试题【已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i.(1)求点C,D对应的复】;主要考察你对平面向量应用举例等知识点的理解。[详细]
举一反三
(2014·黄冈模拟)设a=(cosα,sinα),b=(cosβ,sinβ),若a-b=,θ为a与b的夹角.
(1)求θ的值.
(2)若f(x)=2sin(θ-x)cos(θ-x)+2sin2(θ-x),求f(x)的单调递增区间.
题型:不详难度:| 查看答案
已知平面向量a=(,-1),b=.
(1)若x=(t+2)a+(t2-t-5)b,y=-ka+4b(t,k∈R),且x⊥y,求出k关于t的关系式k=f(t).
(2)求函数k=f(t)在t∈(-2,2)上的最小值.
题型:不详难度:| 查看答案
已知:直线与⊙C:
(1)若直线与⊙C相交,求的取值范围。
(2)在(1)的条件下,设直线与⊙C交于A、B两点,若OA⊥OB,求的值。
题型:不详难度:| 查看答案
(2011•浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为,则α和β的夹角θ的范围是 _________ 
题型:不详难度:| 查看答案
(2011•山东)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是(  )
A.C可能是线段AB的中点
B.D可能是线段AB的中点
C.C,D可能同时在线段AB上
D.C,D不可能同时在线段AB的延长线上

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.