当前位置:高中试题 > 数学试题 > 四种命题的概念 > 已知命题:“∈{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命题(1)求实数m的取值集合B;(2)设不等式(x-3a)(x-a-2)<0...
题目
题型:期末题难度:来源:
已知命题:“∈{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命题(1)求实数m的取值集合B;
(2)设不等式(x-3a)(x-a-2)<0的解集为A,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.
答案
解:(1)命题:“{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命题,
得x2-x-m<0在-1≤x≤1恒成立,
∴m>(x2-x)max得m>2,
即B=(2,+∞),
(2)不等式(x-3a)(x-a -2)<0,
①当3a>2 +a,即a>1时解集A=(2+a,3a),
若x∈A是x∈B的充分不必要条件,
成立,
∴2+a≥2,
此时a∈(1,+∞).
②当3a=2+a,即a=1时解集A=Φ,著x∈A是x∈B的充分不必要条件,则成立.
③当3a<2+a,即a<1时解集A=(3a,2+a),若x∈A是x∈B的充分不必要条件,则成立,
∴3a≥2,a
综上①②③,有
核心考点
试题【已知命题:“∈{x|-1≤x≤1},都有不等式x2-x-m<0成立”是真命题(1)求实数m的取值集合B;(2)设不等式(x-3a)(x-a-2)<0】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直
其中,为真命题的是[     ]
A. ①和②            
B. ②和③            
C. ③和④          
D. ②和④
题型:河北省期中题难度:| 查看答案
已知是空间三条不同直线,命题:若,则;命题:若三条直线两两相交,则直线共面,则下列命题为真命题的是[     ]
A.    
B.        
C.     
D.
题型:福建省模拟题难度:| 查看答案
下列四个命题中,假命题为[     ]
A. 存在,使            
B.存在,使
C. 任意,使            
D. 任意,使
题型:陕西省模拟题难度:| 查看答案
下列四个命题中,假命题为[     ]

A.任意,使        
B.任意,使
C.存在,使        
D.存在,使

题型:陕西省模拟题难度:| 查看答案
下面是关于复数的四个命题:其中的真命题为 
 , 的共轭复数为的虚部为[     ]
A.        
B.          
C.  
D.
题型:高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.