当前位置:高中试题 > 数学试题 > 四种命题的概念 > 对于△ABC,有如下四个命题:①若sin2A=sin2B,则△ABC为等腰三角形②若sinB=cosA,则△ABC是直角三角形③若sin2A+sin2B>sin...
题目
题型:不详难度:来源:
对于△ABC,有如下四个命题:
①若sin2A=sin2B,则△ABC为等腰三角形
②若sinB=cosA,则△ABC是直角三角形
③若sin2A+sin2B>sin2C,则△ABC是钝角三角形
④若
a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
,则△ABC是等边三角形
其中正确的命题个数是______.
答案
①若sin2A=sin2B,则 2A=2B,或 2A+2B=π,即A=B 或C=
π
2
,故△ABC为等腰三角形或直角三角形,故①不正确.
②若sinB=cosA,例如∠B=100°和∠A=10°,满足sinB=cosA,则△ABC不是直角三角形,故②不正确.
③若sin2A+sin2B>sin2C,则a2+b2>c2,再由余弦定理可得cosC>0,所以C为锐角,故③不正确.
④利用正弦定理边角互化,由
a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
,可得sin
A
2
=sin
B
2
=sin
C
2
,从而可得
A
2
=
B
2
=
C
2
,即A=B=C,故④正确
故答案为:1
核心考点
试题【对于△ABC,有如下四个命题:①若sin2A=sin2B,则△ABC为等腰三角形②若sinB=cosA,则△ABC是直角三角形③若sin2A+sin2B>sin】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
下列说法:
①当x>0且x≠1时,有lnx+
1
lnx
≥2

②函数y=ax的图象可以由函数y=2ax(其中a>0且a≠1)平移得到;
③若对x∈R,有f(x-1)=-f(x),则f(x)的周期为2;
④“若x2+x-6≥0,则x≥2”的逆否命题为真命题;
⑤函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称.
其中正确的命题的序号______.
题型:不详难度:| 查看答案
给定两个命题,P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根;如果P与Q中有且仅有一个为真命题,求实数a的取值范围.
题型:不详难度:| 查看答案
下列有关命题的说法:
①命题“若x=y,则sinx=siny”的逆否命题为真命题;
②“a=3”是“直线ax+2y+3a=0与直线3x+(a-1)y=a-7相互垂直”的充要条件;
③已知命题p:对任意的x∈R,ax2+2x+1≥0.若命题p是假命题,则实数a的取值范围是[0,1);
④“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充分不必要条件.
其中正确的有______.
题型:不详难度:| 查看答案
给出下列四个命题:
①“若am2<bm2,则a<b”的逆命题为真;
②若a<-2,则函数f(x)=ax+3在区间[-1,2]上存在零点;
③函数y=2


2
sinxcosx
在[-
π
4
π
4
]上是单调递减函数;
④若lga+lgb=lg(a+b),则a+b的最小值为4.
其中真命题的序号是______.(请把所有真命题的序号都填上).
题型:不详难度:| 查看答案
给出以下命题:
(1)在△ABC中,sinA>sinB是A>B的必要不充分条件;
(2)在△ABC中,若tanA+tanB+tanC>0,则△ABC一定为锐角三角形;
(3)函数y=


x-1
+


1-x
与函数y=sinπx,x∈{1}是同一个函数;
(4)函数y=f(2x-1)的图象可以由函数y=f(2x)的图象按向量


a
=(1,0)
平移得到.
则其中正确命题的序号是______(把所有正确的命题序号都填上).
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.