当前位置:高中试题 > 数学试题 > 四种命题的概念 > 已知命题p:方程x22m-y2m-1=1表示焦点在y轴上的椭圆;命题q:双曲线y25-x2m=1的离心率e∈(1,2),若p、q有且只有一个为真,求m的取值范围...
题目
题型:不详难度:来源:
已知命题p:方程
x2
2m
-
y2
m-1
=1
表示焦点在y轴上的椭圆;命题q:双曲线
y2
5
-
x2
m
=1
的离心率e∈(1,2),若p、q有且只有一个为真,求m的取值范围.
答案
将方程
x2
2m
-
y2
m-1
=1
改写为
x2
2m
+
y2
1-m
=1

只有当1-m>2m>0,即0<m<
1
3
时,方程表示的曲线是焦点在y轴上的椭圆,所以命题p等价于0<m<
1
3
;(4分)
因为双曲线
y2
5
-
x2
m
=1
的离心率e∈(1,2),
所以m>0,且1
5+m
5
<4
,解得0<m<15,
所以命题q等价于0<m<15;…(8分)
若p真q假,则m∈∅;
若p假q真,则
1
3
≤m<15

综上:m的取值范围为
1
3
≤m<15
…(12分)
核心考点
试题【已知命题p:方程x22m-y2m-1=1表示焦点在y轴上的椭圆;命题q:双曲线y25-x2m=1的离心率e∈(1,2),若p、q有且只有一个为真,求m的取值范围】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
已知命题p:(x+1)(x-5)≤0,命题q:1-m≤x≤1+m(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围.
题型:海门市模拟难度:| 查看答案
命题P:关于x的方程mx2-(1-m)x+m=0没有实数解;命题Q:关于x的方程x2-(m+3)x+m+3=0有两个不等正实数根;若命题P且命题非Q为真,求m值的取值范围.
题型:不详难度:| 查看答案
在数列{an}中,如果对任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ为常数),则称数列{an}为比等差数列,λ称为比公差.则下列命题中真命题的序号是______
①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2;
③“等差数列是常数列”是“等差数列成为比等差数列”的充分必要条件;
④数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N),则此数列的通项为an=
n•3n
3n-1
,且{an}不是比等差数列.
题型:不详难度:| 查看答案
判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.
(Ⅰ)存在实数x,使得x2+2x+3<0;
(Ⅱ)有些三角形是等边三角形;
(Ⅲ)方程x2-8x-10=0的每一个根都不是奇数.
题型:不详难度:| 查看答案
以下各个关于圆锥曲线的命题中
①设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=a(a>0),则动点P的轨迹是椭圆或线段;
②过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有3条;
③离心率为
1
2
,长轴长为8的椭圆标准方程为
x2
16
+
y2
12
=1

④若3<k<4,则二次曲线
x2
4-k
+
y2
3-k
=1
的焦点坐标是(±1,0).
其中真命题的序号为______(写出所有真命题的序号)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.