当前位置:高中试题 > 数学试题 > 四种命题的概念 > 下列四个命题中:①设经x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的必要不充分条件;②命题“所有能被2整除的整数都是偶数”的否定是:“存在一个能被2整除...
题目
题型:不详难度:来源:
下列四个命题中:
①设经x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的必要不充分条件;
②命题“所有能被2整除的整数都是偶数”的否定是:“存在一个能被2整除的整数不是偶数”;
③已知命题“如果|a|≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为∅”,它的逆命题是假命题;
④“m=1”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充要条件;
则所有正确命题的序号有______.
答案
①若x≥2且y≥2,则x2+y2≥4成立.当x=0,y=3时,满足x2+y2≥4,但x≥2不成立,所以“x≥2且y≥2”是“x2+y2≥4”的充分不必要条件,所以①错误.
②全称命题的否定是特称命题,所以命题“所有能被2整除的整数都是偶数”的否定是:“存在一个能被2整除的整数不是偶数”,所以②正确.
③原命题的逆命题为“若关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为∅,则|a|≤1”,当a=-2时,不等式等价为-1≥0,此时解集为空集,
所以a=-2成立,所以逆命题为假命题,所以③正确.
④若(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直,则(m+2)(m-2)+m(m+2)=0,即(m+2)(m-1)=0,解得m=1或m=-2.
  所以“m=1”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件,所以④错误.
故答案为:②③.
核心考点
试题【下列四个命题中:①设经x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的必要不充分条件;②命题“所有能被2整除的整数都是偶数”的否定是:“存在一个能被2整除】;主要考察你对四种命题的概念等知识点的理解。[详细]
举一反三
有下列命题:
①函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=
x+3
x-1
的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
④已知命题p:对任意的x∈R,都有sinx≤1,则非p:存在x∈R,使得sinx>1.
其中所有真命题的序号是(  )
A.①②B.③④C.②③④D.①②④
题型:不详难度:| 查看答案
下列说法正确的是(  )
A.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上为增函数”的充要条件
B.命题“∃x∈R使得x2+2x+3<0”的否定是:“∀x∈R,x2+2x+3>0”
C.“x=-1”是“x2+2x+3=0”的必要不充分条件
D.命题p:“∀x∈R,sinx+cosx≤


2
”,则¬p是真命题
题型:不详难度:| 查看答案
函数f(x)=1g
x2+1
|x|
(x≠0,x∈R),有下列命题:
①f(x)的图象关于y轴对称;  
②f(x)的最小值是2;
③f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;   
④f(x)没有最大值.
其中正确命题的序号是______.(请填上所有正确命题的序号)
题型:不详难度:| 查看答案
已知命题p:不等式|x|+|x+1|>m的解集为R,命题q:f(x)=-log(3m-1)x是增函数,若p或q为真命题,p且q为假命题,则m的取值范围是 ______.
题型:不详难度:| 查看答案
关于直线m、n与平面α、β,有以下四个命题:
①若mn,m⊂α,α∩β=n,则mn;
②若m⊥α,nβ且αβ,则m⊥n;
③若m⊥α,nβ且αβ,则m⊥n;
④若m⊥α,n⊥β且α⊥β,则m⊥n.
其中真命题有(  )
A.1个B.2个C.3个D.4个
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.