当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 设随机变量ξ 满足Eξ=﹣1,Dξ=3,则E[3(ξ 2﹣2)]=[     ]A.9  B.6  C.30  D.36 ...
题目
题型:广东省模拟题难度:来源:
设随机变量ξ 满足Eξ=﹣1,Dξ=3,则E[3(ξ 2﹣2)]=[     ]
A.9  
B.6  
C.30  
D.36
答案
B
核心考点
试题【设随机变量ξ 满足Eξ=﹣1,Dξ=3,则E[3(ξ 2﹣2)]=[     ]A.9  B.6  C.30  D.36 】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
在独立重复的射击试验中,某人击中目标的概率是,则他在射击时击中目标所需要的射击次数 ξ 的期望是(    )
题型:广东省模拟题难度:| 查看答案
已知袋中有红色球3个,蓝色球2个,黄色球1个,从中任取一球,确定颜色后,不再放回袋中.
(1)求在三次选取中恰好有两次取到蓝色球的概率;
(2)若取到红球就结束选取,且最多只可以取三次,求取球次数的分布列及数学期望.
题型:广东省模拟题难度:| 查看答案
某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:

根据上表:(1)求数学辅导讲座在周一、周三、周五都不满座的概率;  
(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望。
题型:湖北省模拟题难度:| 查看答案
某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
题型:广东省模拟题难度:| 查看答案
在淮北市高三“一模”考试中,某校甲、乙、丙、丁四名同学,在学校年级名次依次为l,2,3,4名,如果在“二模”考试中的前4名依然是这四名同学.
(1)求“二模”考试中恰好有两名同学排名不变的概率;
(2)设“二模”考试中排名不变的同学人数为X,求X分布列和数学期望.
题型:安徽省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.