当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每...
题目
题型:湖北省模拟题难度:来源:
某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:

根据上表:(1)求数学辅导讲座在周一、周三、周五都不满座的概率;  
(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望。
答案
解(I)设数学辅导讲座在周一、周三、周五都不满座为事件A,

(II)ξ的可能值得为0,1,2,3,4,5


所以随机变量ξ的分布列如下:

核心考点
试题【某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
题型:广东省模拟题难度:| 查看答案
在淮北市高三“一模”考试中,某校甲、乙、丙、丁四名同学,在学校年级名次依次为l,2,3,4名,如果在“二模”考试中的前4名依然是这四名同学.
(1)求“二模”考试中恰好有两名同学排名不变的概率;
(2)设“二模”考试中排名不变的同学人数为X,求X分布列和数学期望.
题型:安徽省模拟题难度:| 查看答案
某批发市场对某种商品日销售量(单位吨)进行统计,最近50天的统计结果如图.
(1)计算这50天的日平均销售量;
(2)若以频率为概率,其每天的销售量相互独立.①求5天中该种商品恰有2天的销售量为1.5吨的概率;②已知每吨该商品的销售利润为2千元,X表示该种商品两天销售利润的和,求X的分布列和数学期望.
题型:河北省模拟题难度:| 查看答案
如果甲乙两个乒乓球选手进行比赛,而且他们在每一局中获胜的概率都是,规定使用“七局四胜制”,即先赢四局者胜.
(1)试分别求甲打完4局、5局才获胜的概率;
(2)设比赛局数为,求的分布列及期望。
题型:吉林省期中题难度:| 查看答案
眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化“知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响.
(I)分别求“甲队得2分乙队得1分”和“甲队得3分乙队得0分”的概率;
(II)用ξ表示甲队的总得分,求随机变量ξ的分布列和数学期望Eξ.
题型:四川省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.