当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机...
题目
题型:不详难度:来源:
为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:
甲公司某员工A
 
乙公司某员工B
3
9
6
5
8
3
3
2
3
4
6
6
6
7
7
 
 
 
 
 
 
0
1
4
4
2
2
2
 
 
每名快递员完成一件货物投递可获得的劳务费情况如下:
甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;
(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.
答案
(1)平均数为36,众数为33.(2)

136
147
154
189
203






(3)甲公司4860元,乙公司4965元
解析

试题分析:(1)由平均数计算公式得:,出现得最多的数是33.(2)先计算出随机变量取值集合,当投递件数为34时,=136元;当投递件数为36时,=147元;当投递件数为37时,=154元;当投递件数为42时,=189元;当投递件数为44时,=1203元;再分别求出其概率,最后利用数学期望公式求出(3)甲公司被抽取员工该月收入为元,乙公司被抽取员工该月收入为元.
试题解析:解:
(1)甲公司员工A投递快递件数的平均数为36,众数为33.                2分
(2)设为乙公司员工B投递件数,则
=34时,=136元,当>35时,元,
的可能取值为136,147,154,189,203               4分
{说明:X取值都对给4分,若计算有错,在4分基础上错1个扣1分,4分扣完为止
的分布列为:

136
147
154
189
203






                   9分
{说明:每个概率值给1分,不化简不扣分,随机变量值计算错误的此处不再重复扣分}

                   11分
(3)根据图中数据,可估算甲公司被抽取员工该月收入4860元,乙公司被抽取员工该月收入4965元.                  13分
核心考点
试题【为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记1分,海选不合格记0分.假设甲、乙、丙海选合格的概率分别为,他们海选合格与不合格是相互独立的.
(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;
(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量,求随机变量的分布列和数学期望
题型:不详难度:| 查看答案
生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标





元件A
8
12
40
32]
8
元件B
7
18
40
29
6
(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下;
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.
题型:不详难度:| 查看答案
某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.
(1)求选手甲进入复赛的概率;
(2)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
题型:不详难度:| 查看答案
某个不透明的袋中装有除颜色外其它特征完全相同的8个乒乓球(其中3个是白色球,5个是黄色球),小李同学从袋中一个一个地摸乒乓球(每次摸出球后不放回),当摸到的球是黄球时停止摸球.用随机变量表示小李同学首先摸到黄色乒乓球时的摸球次数,则随机变量的数学期望值   
题型:不详难度:| 查看答案
一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是________.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.