题目
题型:不详难度:来源:
(1)当a∈{-2,-1,0,1,2},b∈{0,1,2,3}时,方程x2+2ax+b2=0有实根的概率;
(2)当a∈[0,2],b∈[0,3]时,方程x2+2ax+b2=0有实根的概率.
答案
(1)当a∈{-2,-1,0,1,2},b∈{0,1,2,3}时,a与b的所有组合为(第一个数为a的值,第二个数为b的值):
(-2,0),(-2,1),(-2,2),(-2,3),(-1,0),(-1,1),(-1,2),(-1,3),(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),共20组,即基本事件有20个,由于a在{-2,-1,0,1,2}里取是随机的,b在{0,1,2,3}里取是随机的,所以上述20个事件是等可能性的.
又因为满足条件a2≥b2的有:(-2,0),(-2,1),(-2,2),(-1,0),(-1,1),(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)共11个,即事件A包含了11个基本事件,
所以P(A)=
11 |
20 |
所以,方程x2+2ax+b2=0有实根的概率为
11 |
20 |
(2)设点M的坐标为(a,b),由于a∈[0,2],b∈[0,3],所以,所有的点M对构成坐标平面上一个区域(如图6中的矩形OABC),即所有的基本事件构成坐标平面上的区域OABC,其面积为2×3=6.
由于a在[0,2]上随机抽取,b在[0,3]上随机抽取,
所以,组成区域ABCD的所有基本事件是等可能性的.
又由于满足条件0≤a≤2,且0≤b≤3,且a2≥b2,即a≥b的平面区域如图6中阴影部分所示,其面积为
1 |
2 |
所以,事件A组成平面区域的面积为4,所以P(A)=
2 |
6 |
1 |
3 |
所以,方程x2+2ax+b2=0有实根的概率为
1 |
3 |
核心考点
试题【已知关于x的一元二次方程x2+2ax+b2=0,求:(1)当a∈{-2,-1,0,1,2},b∈{0,1,2,3}时,方程x2+2ax+b2=0有实根的概率;(】;主要考察你对古典概型的概念及概率等知识点的理解。[详细]
举一反三
A.
| B.
| C.
| D.
|
A.
| B.
| C.
| D.
|