当前位置:高中试题 > 数学试题 > 用样本的频率分布估计总体分布 > 甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:若将频率视为概率,回答下列问题:...
题目
题型:不详难度:来源:
甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:

若将频率视为概率,回答下列问题:
(1)求表中x,y,z的值及甲运动员击中10环的概率;
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率;
(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及
答案
(1)0.35;(2)0.992;(3)2.35,分布列如下:
ξ
0
1
2
3
P
0.01
0.11
0.4
0. 48

解析

试题分析:(1)结合频率分布表、频率之和为1的性质和频率的计算公式去求;(2)利用“至少有一次击中9环以上(含9环)”的对立事件是“三次都没有击中9环以上(含9环)”,而且三次射击的事件都是彼此相互独立的,所以“三次都没有击中9环以上(含9环)”的概率是0.23,再用间接法求.(3)先根据独立事件的乘法公式求出随机变量各取值的概率,再写出其分布列和数学期望.
试题解析:(1)由题意可得x=100(10+10+35)=45,y=1(0.1+0.1+0.45)=0.35,
因为乙运动员的射击环数为9时的频率为1(0.1+0.15+0.35)=0.4,所以z=0.4×80=32,
由上可得表中x处填45,y处填0.35,z处填32.                 3分
设“甲运动员击中10环”为事件A,则P(A)=0.35,
即甲运动员击中10环的概率为0.35.                            4分
(2)设甲运动员击中9环为事件A1,击中10环为事件A2,则甲运动员在一次射击中击中9
环以上(含9环)的概率为P(A1+A2)=P(A1)+P(A2)=0.45+0.35=0.8,
故甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率
P=1[1P(A1+A2)]3=10.23=0.992       7分
(3)ζ的可能取值是0,1,2,3,则P(ζ=0)=0.22×0.25=0.01


                            10分
所以ξ的分布列是
ξ
0
1
2
3
P
0.01
0.11
0.4
0. 48
                 12分
核心考点
试题【甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:若将频率视为概率,回答下列问题:】;主要考察你对用样本的频率分布估计总体分布等知识点的理解。[详细]
举一反三
从某学校高三年级名学生中随机抽取名测量身高,据测量被抽取的学生的身高全部介于之间,将测量结果按如下方式分成八组:第一组.第二组; 第八组,下图是按上述分组方法得到的条形图.

(1)根据已知条件填写下面表格:
组 别
1
2
3
4
5
6
7
8
样本数
 
 
 
 
 
 
 
 
(2)估计这所学校高三年级名学生中身高在以上(含)的人数;
(3)在样本中,若第二组有人为男生,其余为女生,第七组有人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
题型:不详难度:| 查看答案
2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):

月收入(百元)
赞成人数
[15,25)
8
[25,35)
7
[35,45)
10
[45,55)
6
[55,65)
2
[65,75)
1
 
(I)试根据频率分布直方图估计这60人的平均月收入;
(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望. 
题型:不详难度:| 查看答案
某行业从2013年开始实施绩效工资改革,为了解该行业职工工资收入情况,调查了lOOO名该行业的职工,并由所得数据画出了如图所示的频率分布直方图,由图可知中位数为:_____现要从这1000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在[3500,4000)(元)内应抽出______人.

题型:不详难度:| 查看答案
如图是甲、乙两名篮球运动员2012年赛季每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和是______.

题型:不详难度:| 查看答案
学校为了解学生在课外读物方面的支出情况,抽取了个同学进行调查,结果显示这些同学的支出都在[10,50)(单 位:元),其中支出在(单位:元)的同学有67人,其频率分布直方图如图所示,则的值为( )
A.100B.120C.130D.390

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.