当前位置:高中试题 > 数学试题 > 求轨迹方程 > 已知定点A(-2,0),B(2,0),及定点F(1,0),定直线l:x=4,不在x轴上的动点M到定点F的距离是它到定直线l的距离的12倍,设点M的轨迹为E,点C...
题目
题型:不详难度:来源:
已知定点A(-2,0),B(2,0),及定点F(1,0),定直线l:x=4,不在x轴上的动点M到定点F的距离是它到定直线l的距离的
1
2
倍,设点M的轨迹为E,点C是轨迹E上的任一点,直线AC与BC分别交直线l与点P,Q.
(1)求点M的轨迹E的方程;
(2)试判断以线段PQ为直径的圆是否经过定点F,并说明理由.
答案
(1)由椭圆的第二定义可知:
点M的轨迹E是以定点F(1,0)为焦点,离心率e=
1
2
,直线l:x=4为准线的椭圆(除去与x轴相交的两点).
∴c=1,
c
a
=
1
2
,∴a=2,b2=22-12=3,
∴点M的轨迹为椭圆E,其方程为
x2
4
+
y2
3
=1
(除去(±2,0)).
(2)以线段PQ为直径的圆经过定点F.下面给出证明:
如图所示:设C(x0,y0),(x0≠±2),则直线AC的方程为:y=
y0
x0+2
(x+2)

令x=4,则yP=
6y0
x0+2
,∴P(4,
6y0
x0+2
)
,∴kPF=
6y0
x0+2
4-1
=
2y0
x0+2

直线BC的方程为:y=
y0
x0-2
(x-2)
,令x=4,则yQ=
2y0
x0-2
,∴Q(4,
2y0
x0-2
)
,∴kQF=
2y0
x0-2
4-1
=
2y0
3(x0-2)

∴kPF•kQF=
2y0
x0+2
×
2y0
3(x0-2)
=
4y02
3(x02-4)

∵点C(x0,y0)在椭圆
x2
4
+
y2
3
=1
上,∴
x02
4
+
y02
3
=1
,∴
4y02
3(x02-4)
=-1,
∴kPF•kQF=-1.
因此以线段PQ为直径的圆经过定点F.
核心考点
试题【已知定点A(-2,0),B(2,0),及定点F(1,0),定直线l:x=4,不在x轴上的动点M到定点F的距离是它到定直线l的距离的12倍,设点M的轨迹为E,点C】;主要考察你对求轨迹方程等知识点的理解。[详细]
举一反三
如图,三条直线a、b、c两两平行,直线a、b间的距离为p,直线b、c间的距离为
p
2
,A、B为直线a上的两个定点,且AB=2p,MN是在直线b上滑动的长度为2p的线段.
(1)建立适当的平面直角坐标系,求△AMN的外心C的轨迹E;
(2)当△AMN的外心C在E上什么位置时,使d+BC最小?最小值是多少?(其中,d为外心C到直线c的距离)
题型:不详难度:| 查看答案
已知定点N(3,0)与以点M为圆心的圆M的方程为(x+3)2+y2=16,动点P在圆M上运动,线段PN的垂直平分线交直线MP于Q点,则动点Q的轨迹方程是______.
题型:不详难度:| 查看答案
(1)在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-
1
3
.求动点P的轨迹方程.
(2)
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为2,原点到直线AB的距离为


3
2
,其中A(0,-b)、B(a,0)求该双曲线的标准方程.
题型:不详难度:| 查看答案
已知一条曲线上的点到定点O(0,0)的距离是到定点A(3,0)距离的二倍,求这条曲线的方程.
题型:不详难度:| 查看答案
设过点P(x,y)的直线分别与x轴和y轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若


BP
=3


PA


OQ


AB
=4

(1)求点P的轨迹M的方程;
(2)过F(2,0)的直线与轨迹M交于A,B两点,求


FA


FB
的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.