当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠∅?若存在,请求出a的值;...
题目
题型:不详难度:来源:
设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠∅?若存在,请求出a的值;若不存在,说明理由.
答案
假设A∩B≠∅,则方程组





y=2x-1
y=ax2-ax+a
有正整数解,
消去y,得ax2-(a+2)x+a+1=0.(*)
由△≥0,得(a+2)2-4a(a+1)≥0,解得-
2


3
3
≤a≤
2


3
3

因a为非零整数,∴a=±1,
当a=-1时,代入(*),解得x=0或x=-1,而x∈N*.故a≠-1.
当a=1时,代入(*),解得x=1或x=2,符合题意.
故存在a=1,使得A∩B≠∅,此时A∩B={(1,1),(2,3)}.
核心考点
试题【设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠∅?若存在,请求出a的值;】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
(200个•陕西)已知椭圆C:
x2
2
+
y2
b2
=1
(个>b>0)的离心率为


3
,短轴一个端点到右焦点的距离为


3

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于个、B两点,坐标原点O到直线l的距离为


3
2
,求△个OB面积的最大值.
题型:不详难度:| 查看答案
已知椭圆C:
x2
2
+y2=1
的左、右焦点分别为F1,F2,下顶点为A,点P是椭圆上任一点,⊙M是以PF2为直径的圆.
(Ⅰ)当⊙M的面积为
π
8
时,求PA所在直线的方程;
(Ⅱ)当⊙M与直线AF1相切时,求⊙M的方程;
(Ⅲ)求证:⊙M总与某个定圆相切.
题型:不详难度:| 查看答案
直线y=kx+2与双曲线x2-y2=2有且只有一个交点,那么实数k的值是(  )
A.k=±1B.k=±


3
C.k=±1或k=±


3
D.k=±


2
题型:不详难度:| 查看答案
斜率为1,过抛物线y=
1
4
x2的焦点的直线截抛物线所得的弦长为(  )
A.8B.6C.4D.10
题型:不详难度:| 查看答案
平面直角坐标系xOy中,过椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)右焦点的直线x+y-


3
=0交M于A,B两点,P为AB的中点,且OP的斜率为
1
2

(Ⅰ)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.