当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知点P(-1,32)是椭圆C:x2a2+y2b2=1(a>b>0)上一点,F1、F2分别是椭圆C的左、右焦点,O是坐标原点,PF1⊥x轴.①求椭圆C的方程;②...
题目
题型:不详难度:来源:
已知点P(-1,
3
2
)是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆C的左、右焦点,O是坐标原点,PF1⊥x轴.
①求椭圆C的方程;
②设A、B是椭圆C上两个动点,满足


PA
+


PB


PO
(0<λ<4,且λ≠2)求直线AB的斜率.
答案
①∵PF1⊥x轴,∴c=1,把点P(-1,
3
2
)代入椭圆的方程得
1
a2
+
9
4b2
=1
,又a2-b2=c2=1,联立解得a2=4,b2=3.
∴椭圆C的方程为
x2
4
+
y2
3
=1

②设直线y=kx+m,联立





y=kx+m
x2
4
+
y2
3
=1
,化为(3+4k2)x2+8kmx+4m2-12=0,
∵直线AB与椭圆有两个不同的交点,∴△=64k2m2-4(3+4k2)(4m2-12)>0,化为3+4k2-m2>0.(*)
x1+x2=-
8km
3+4k2

∵满足


PA
+


PB


PO
(0<λ<4,且λ≠2),
(x1+1,y1-
3
2
)
+(x2+1,y2-
3
2
)
=λ(1,-
3
2
)

∴x1+x2+2=λ,y1+y2-3=-
3
2
λ

又y1+y2=kx1+m+kx2+m=k(x1+x2)+2m,
k(x1+x2)+2m-3=-
3
2
(x1+x2+2)

(k+
3
2
)(x1+x2)
+2m=0,
(k+
3
2
-8km
3+4k2
+2m=0

化为m(2k-1)=0,
若m=0,则直线AB经过原点,此时


PA
+


PB
=2


PO
,λ=2,不符合题意,因此m≠0.
∴2k-1=0,解得k=
1
2
核心考点
试题【已知点P(-1,32)是椭圆C:x2a2+y2b2=1(a>b>0)上一点,F1、F2分别是椭圆C的左、右焦点,O是坐标原点,PF1⊥x轴.①求椭圆C的方程;②】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知椭圆
x2
16
+
y2
12
=1,点P为其上一点,F1、F2为椭圆的焦点,Q为射线F1P延长线上一点,且|PQ|=|PF2|,设R为F2Q的中点.
(1)当P点在椭圆上运动时,求R形成的轨迹方程;
(2)设点R形成的曲线为C,直线l:y=k(x+4


2
)与曲线C相交于A、B两点,若∠AOB=90°时,求k的值.
题型:不详难度:| 查看答案
设椭圆M:
y2
a2
+
x2
b2
=1
(a>b>0)经过点P(1,


2
)
,其离心率e=


2
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)直线l:y=


2
x+m
交椭圆于A、B两点,且△PAB的面积为


2
,求m的值.
题型:不详难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=


3
2
,直线x+y+1=0与椭圆交于P、Q两点,且OP⊥OQ,求该椭圆方程.
题型:不详难度:| 查看答案
已知椭圆C:
x2
25
+
y2
16
=1
,过点(3,0)的且斜率为
4
5
的直线被C所截线段的中点坐标为(  )
A.(
1
2
6
5
)
B.(
1
2
,-
6
5
)
C.(
3
2
6
5
)
D.(
3
2
,-
6
5
)
题型:不详难度:| 查看答案
已知抛物线y2=6x,过点p(3,1)引一条弦p1p2使它恰好被点p平分,求这条弦所在直线方程及|p1p2|.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.