当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知抛物线y2=6x,过点p(3,1)引一条弦p1p2使它恰好被点p平分,求这条弦所在直线方程及|p1p2|....
题目
题型:不详难度:来源:
已知抛物线y2=6x,过点p(3,1)引一条弦p1p2使它恰好被点p平分,求这条弦所在直线方程及|p1p2|.
答案
设P1(x1,y1),P2(x2,y2).





y12=6x1
y22=6x2
,①-②得(y1+y2)(y1-y2)=6(x1-x2).
y1-y2
x1-x2
=3
.即kP1P2=3
所以过P(3,1)的直线方程为y-1=3(x-3),即3x-y-8=0;
再由





y2=6x
3x-y-8=0
,得y2-2y-16=0.
则y1+y2=2,y1y2=-16.
所以|P1P2|=


1+
1
9


(y1+y2)2-4y1y2
=


10
9


22+64
=
2
3


170
核心考点
试题【已知抛物线y2=6x,过点p(3,1)引一条弦p1p2使它恰好被点p平分,求这条弦所在直线方程及|p1p2|.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
在平面直角坐标系xOy中,已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
题型:不详难度:| 查看答案
设a、b是非零实数,则方程bx2+ay2=ab及ax+by=0所表示的图形可能是(  )
A.B.C.D.
题型:不详难度:| 查看答案
已知直线x-y+1=0经过椭圆S:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意k>0,求证:PA⊥PB.
题型:不详难度:| 查看答案
已知椭圆┍的方程为
x2
a2
+
y2
b2
=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足


PM
=
1
2


PA
+


PB
),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-
b2
a2
,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(acosθ,bsinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足


PP1
+


PP2
=


PQ
,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.
题型:不详难度:| 查看答案
如图,已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连接AD、BD得到△ABD.
(i)求实数a,b,k满足的等量关系;
(ii)△ABD的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.