当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 如图,已知抛物线y2=4x的焦点为F.过点P(2,0)的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF,BF分别与抛物线交于点M,N.(Ⅰ)求y...
题目
题型:不详难度:来源:
如图,已知抛物线y2=4x的焦点为F.过点P(2,0)的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF,BF分别与抛物线交于点M,N.
(Ⅰ)求y1y2的值;
(Ⅱ)记直线MN的斜率为k1,直线AB的斜率为k2.证明:
k1
k2
为定值.
答案
(Ⅰ)依题意,设直线AB的方程为x=my+2.
将其代入y2=4x,消去x,整理得y2-4my-8=0.
从而y1y2=-8.
(Ⅱ)证明:设M(x3,y3),N(x4,y4).
k1
k2
=
y3-y4
x3-x4
×
x1-x2
y1-y2
=
y3-y4
y32
4
-
y42
4
×
y12
4
-
y22
4
y1-y2
=
y1+y2
y3+y4

设直线AM的方程为x=ny+1,将其代入y2=4x,消去x,
整理得y2-4ny-4=0.
所以y1y3=-4.
同理可得y2y4=-4.
k1
k2
=
y1+y2
y3+y4
=
y1+y2
-4
y1
+
-4
y2
=
y1y2
-4

由(Ⅰ)得
k1
k2
=2,为定值.
核心考点
试题【如图,已知抛物线y2=4x的焦点为F.过点P(2,0)的直线交抛物线于A(x1,y1),B(x2,y2)两点,直线AF,BF分别与抛物线交于点M,N.(Ⅰ)求y】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(2,0),且离心率为


3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点N(


2
,0)且斜率为


6
3
的直线l与椭圆C交于A,B两点,求证:


OA


OB
=0.
题型:不详难度:| 查看答案
如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C.
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
题型:不详难度:| 查看答案
设抛物线y2=2px(p为常数)的准线与X轴交于点K,过K的直线l与抛物线交于A、B两点,则


OA


OB
=______.
题型:不详难度:| 查看答案
如图所示的曲线C是由部分抛物线C1:y=x2-1(|x|≥1)和曲线C2x2+
y2
m
=1
(y≤0,m>0)“合成”的,直线l与曲线C1相切于点M,与曲线C2相切于点N,记点M的横坐标为t(t>1),其中A(-1,0),B(1,0).
(1)当t=


2
时,求m的值和点N的坐标;
(2)当实数m取何值时,∠MAB=∠NAB?并求出此时直线l的方程.
题型:不详难度:| 查看答案
设双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,且|F1F2|=4,一条渐近线的倾斜角为60°.
(I)求双曲线C的方程和离心率;
(Ⅱ)若点P在双曲线C的右支上,且△PF1F2的周长为16,求点P的坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.