当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 设分别为具有公共焦点的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足的值为      (   )A.2B.C.4D....
题目
题型:不详难度:来源:
分别为具有公共焦点的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足的值为      (   )
A.2B.C.4D.

答案
A
解析

|PF1|+|PF2|=2a,|PF1|-|PF2|=2m|PF1|=a+m,|PF2|=a-m.
又|PF1|2+|PF2|2=|F1F2|2=4c2,∴a2+m2=2c2,=2.
核心考点
试题【设分别为具有公共焦点的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足的值为      (   )A.2B.C.4D.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
(本题满分14分)
抛物线D以双曲线的焦点为焦点.
(1)求抛物线D的标准方程;
(2)过直线上的动点P作抛物线D的两条切线,切点为AB.求证:直线AB过定点Q,并求出Q的坐标;
(3)在(2)的条件下,若直线PQ交抛物线DMN两点,求证:|PM|·|QN|=|QM|·|PN|
题型:不详难度:| 查看答案
如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;
(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,
若△OEF的面积不小于2,求直线l的斜率的取值范围.

题型:不详难度:| 查看答案
(本题满分14分)
已知点),过点作抛物线的切线,切点分别为(其中).
(Ⅰ)求的值(用表示);
(Ⅱ)若以点为圆心的圆与直线相切,求圆面积的最小值.
题型:不详难度:| 查看答案
若曲线与直线没有公共点,则的取值范围是________________.
题型:不详难度:| 查看答案
已知斜率为的直线过抛物线的焦点,且与抛物线交于两点,(1)求直线的方程(用表示);
(2)若设,求证:
(3)若,求抛物线方程.
 
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.