当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知、分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若.(Ⅰ)求此椭圆的方程;(Ⅱ)点是椭圆的右顶点,直线与椭圆交于、两点(在第一象限内),又、是此椭圆上两...
题目
题型:不详难度:来源:
已知分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若.
(Ⅰ)求此椭圆的方程;
(Ⅱ)点是椭圆的右顶点,直线与椭圆交于两点(在第一象限内),又是此椭圆上两点,并且满足,求证:向量共线.
答案
(Ⅰ);(Ⅱ)详见解析.
解析

试题分析:(Ⅰ)求此椭圆的方程,由题意到上顶点的距离为2,即,再由,即可求出,从而得椭圆的方程;(Ⅱ)求证:向量共线,即证,由于点是椭圆的右顶点,可得,直线与椭圆交于两点(在第一象限内),可由,解得,得,只需求出直线的斜率,由题意,而的平分线平行,可得的平分线垂直于轴,设的斜率为,则的斜率;因此的方程分别为:;其中;分别代入椭圆方程,得的表达式,从而可得直线的斜率,从而可证.
试题解析:(Ⅰ)由题知:
(Ⅱ)因为:,从而的平分线平行,
所以的平分线垂直于轴;
不妨设的斜率为,则的斜率;因此的方程分别为:;其中; 由得;,因为在椭圆上;所以是方程的一个根;
从而;    同理:;得,
从而直线的斜率;又;所以;所以所以向量共线.
核心考点
试题【已知、分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若.(Ⅰ)求此椭圆的方程;(Ⅱ)点是椭圆的右顶点,直线与椭圆交于、两点(在第一象限内),又、是此椭圆上两】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若
(Ⅰ)求此椭圆的方程;
(Ⅱ)直线与椭圆交于两点,若弦的中点为,求直线的方程.
题型:不详难度:| 查看答案
分别为双曲线的左、右焦点,为双曲线的左顶点,以为直径的圆交双曲线某条渐过线两点,且满足,则该双曲线的离心率为(    )
A.B.C.D.

题型:不详难度:| 查看答案
已知椭圆的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)抛物线与椭圆有公共焦点,设轴交于点,不同的两点 上(不重合),且满足,求的取值范围.
题型:不详难度:| 查看答案
以抛物线的焦点为圆心,且与双曲线的两条渐近线都相切的圆的方程为        .
题型:不详难度:| 查看答案
已知点是常数),且动点轴的距离比到点的距离小.
(1)求动点的轨迹的方程;
(2)(i)已知点,若曲线上存在不同两点满足,求实数的取值范围;
(ii)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.