题目
题型:不详难度:来源:
(1)求动点P的轨迹C的方程;
(2)过点D(1,0)的直线l交轨迹C于不同的两点M,N,△MON的面积是否存在最大值?若存在,求出△MON的面积的最大值及相应的直线方程;若不存在,请说明理由.
答案
解析
∵A(-2,0),B(2,0),直线AP与直线BP的斜率之积为-,
∴=-(x≠±2).
化简整理得P点的轨迹C的方程为=1(x≠±2).
(2)依题意可设直线l的方程为x=ny+1.
由得(3n2+4)y2+6ny-9=0.
设M(x1,y1),N(x2,y2),则y1+y2=,y1y2=-.
△MON的面积S=|OD|·|y1-y2|==.
令t=,则t≥1,且3t+在[1,+∞)上单调递增,
∴当t=1时,3t+取得最小值4,S取得最大值,
此时直线的方程为x=1.
核心考点
试题【在平面直角坐标系xOy中,O为坐标原点,A(-2,0),B(2,0),点P为动点,且直线AP与直线BP的斜率之积为-.(1)求动点P的轨迹C的方程;(2)过点D】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
(1)求双曲线C的方程;
(2)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M, N,且线段MA的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。
(1)求椭圆的方程;
(2)若椭圆上一动点关于直线的对称点为,求 的取值范围;
(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.
(1)求椭圆的方程;
(2)求的取值范围.
(1)求椭圆的方程;
(2)过椭圆右焦点F2斜率为()的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为,求证:为定值.
(1)求P点的坐标.
(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率;若不能,请说明理由.
最新试题
- 1已知命题p:∃x∈R,x2+m<0;命题q:∀x∈R,x2+mx+1>0.若p或q是真命题,p且q是假命题,则实数m的取
- 2被现代史学家郭沫若称赞为“政启开元,治宏贞观”的封建帝王是( )A.唐太宗B.唐高宗C.武则天D.唐玄宗
- 3初二学生晓明,跟着几个无业青年染上了抽烟、赌博的恶习。他对老师、父母的批评教育充耳不闻。终于因聚众赌博,被公安机关拘留收
- 4我国发射“神舟”六号飞船时,先将飞船发送到一个椭圆轨道上,其近地点M距地面200km,远地点N距地面340km。进入该轨
- 5请你从下列各式中,任选两式作差,并将得到的式子进行因式分解:4a2,(x+y)2,1,9b2。
- 6要保护生物多样性,就要禁止对所有生物资源的开发和利用。( )
- 7(5分)(2011•广东)不等式2x2﹣x﹣1>0的解集是( )A.B.(1,+∞)C.(﹣∞,1)∪(2,
- 8已知,且,则P点的坐标为( )A.B.C.D.
- 9下列符合“南南合作”的一组是( )A.中国--美国B.美国--澳大利亚C.日本--德国D.中国--巴西
- 10Your desk is crowded with too many unnecessary things,includ
热门考点
- 1(3分)粗盐提纯实验中,除去泥沙的三个基本操作是: 、 、 。
- 220余万元巨款无人认领 本报讯(记者赵琰 林勇)4月29日晚,一乘客将20余万元巨款遗落在出租车上(本报昨有报道),然
- 3下列各句中,加粗的成语使用恰当的一项是 [ ]A.对于这座神秘的古代墓葬,专家们希望能从漫无边际的史料中找到一
- 4已知x+y=3x-y=1,求3x2-3y2x2+2xy+y2的值.
- 5用水平力F推静止在斜面上的物块,当力F由零开始逐渐增大到某一值而物块仍保持静止状态,则物块[ ]A.所受合力逐渐
- 6有一个电源(电压足够大且可调)、一个电铃、一个小灯泡、两个开关和若干导线组成电路.只闭合一个开关时,灯亮铃不响;只闭合另
- 7下表是某型号载重汽车的部分参数(g=10N/kg)(1)按照我国道路交通标准,载重车辆的轮胎对地面的压强不得超过7×10
- 8依次填人下列各句横线处的词语,恰当的一组是①广大群众认为:綦江市彩虹桥倒塌案公开审理是 公平性、公正性的体现。
- 9如图,已知BE⊥AD,CF⊥AD,且BE=CF.求证:△BDE≌△CDF.
- 10 有这样一则犹太谚语:“你需要经常在口袋里装上两张纸条,一张上写着‘我只是一粒尘埃’,另一张上则写着‘世界为我而造’。