当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知椭圆:的离心率为,右焦点到直线的距离为.(1)求椭圆的方程;(2)过椭圆右焦点F2斜率为()的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段...
题目
题型:不详难度:来源:
已知椭圆的离心率为,右焦点到直线的距离为
(1)求椭圆的方程;
(2)过椭圆右焦点F2斜率为)的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为,求证:为定值.
答案
(1).(2)证明见解析.
解析

试题分析:(1)利用椭圆的几何性质,建立的方程组即得;
(2)要证明为定值,须从确定两直线斜率的表达式入手.根据题目的条件,应注意设出的直线方程,并与椭圆方程联立,应用韦达定理,建立与坐标的联系;确定的坐标,将斜率用坐标表示.得到的关系即得证.
设过点 的直线方程为:,点
代入椭圆整理得: 
应用韦达定理   
根据直线的方程为:,直线的方程为:
,得点,点 
由直线 的斜率为

代入上式得到的关系即得证.
试题解析:(1)由题意得,                      2分
所以,所求椭圆方程为.                  4分
(2)设过点 的直线方程为:
设点,点                                         5分
将直线方程代入椭圆
整理得:                           6分
因为点在椭圆内,所以直线和椭圆都相交,恒成立,
                         7分
直线的方程为:,直线的方程为:
,得点
所以点的坐标                            9分
直线 的斜率为
      11分
代入上式得:

所以为定值                                       13分
核心考点
试题【已知椭圆:的离心率为,右焦点到直线的距离为.(1)求椭圆的方程;(2)过椭圆右焦点F2斜率为()的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
椭圆C1:+=1(a>b>0)的左、右顶点分别为A,B,点P是双曲线C2:-=1在第一象限内的图象上一点,直线AP,BP与椭圆C1分别交于C,D点,若S△ACD=S△PCD.

(1)求P点的坐标.
(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率;若不能,请说明理由.
题型:不详难度:| 查看答案
坐标平面上有两个定点A,B和动点P,如果直线PA,PB的斜率之积为定值m,则点P的轨迹可能是:①椭圆;②双曲线;③抛物线;④圆;⑤直线.试将正确的序号填在横线上:         .
题型:不详难度:| 查看答案
如图,已知椭圆C:+y2=1(a>1)的上顶点为A,离心率为,若不过点A的动直线l与椭圆C相交于P,Q两点,且·=0.

(1)求椭圆C的方程.
(2)求证:直线l过定点,并求出该定点N的坐标.
题型:不详难度:| 查看答案
给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”的方程.
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.
题型:不详难度:| 查看答案
直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.