当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知椭圆经过点,离心率为,左右焦点分别为.(1)求椭圆的方程;(2)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程....
题目
题型:不详难度:来源:
已知椭圆经过点,离心率为,左右焦点分别为.

(1)求椭圆的方程;
(2)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程.
答案
(1);(2).
解析

试题分析:(1)由题意可得,解出的值,即可求出椭圆的方程;
(2)由题意可得以为直径的圆的方程为,利用点到直线的距离公式得:圆心到直线的距离,可得的取值范围,利用弦长公式可得,设,把直线的方程与椭圆的方程联立可得根与系数的关系,进而得到弦长,由,即可解得的值.
试题解析:(1)由题意可得
解得
椭圆的方程为
由题意可得以为直径的圆的方程为
圆心到直线的距离为
,即,可得


联立
整理得
可得:



解方程得,且满足
直线的方程为
核心考点
试题【已知椭圆经过点,离心率为,左右焦点分别为.(1)求椭圆的方程;(2)若直线与椭圆交于两点,与以为直径的圆交于两点,且满足,求直线的方程.】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知双曲线 的一个焦点与抛物线的焦点重合,且双曲线的离心率等于,则该双曲线的方程为(   )
A.B.
C.D.

题型:不详难度:| 查看答案
曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论:
①曲线C过坐标原点;
②曲线C关于坐标原点对称;
③若点P在曲线C上,则△F1PF2的面积不大于a2
其中,所有正确结论的序号是________.
题型:不详难度:| 查看答案
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)是否存在斜率 的直线使直线与椭圆相交于不同的两点M,N满足,若存在,求直线l的方程;若不存在,说明理由。

题型:不详难度:| 查看答案
如图,已知直线l与抛物线相切于点P(2,1),且与轴交于点A,定点B的坐标为(2,0) .

(1)若动点M满足,求点M的轨迹C;
(2)若过点B的直线l(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
题型:不详难度:| 查看答案
已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形.(12分)
(1)求椭圆的方程;
(2)直线与椭圆交于两点,若线段的垂直平分线经过点,求
为原点)面积的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.