题目
题型:不详难度:来源:
答案
p |
2 |
得k2x2-(k2p+2p)x+
k2p2 |
4 |
∴x1+x2=
k2p+2p |
k2 |
又由抛物线定义可得
m+n=x1+x2+p=
2k2p+2p |
k2 |
2p(k2+1) |
k2 |
m•n=(x1+
p |
2 |
p |
2 |
p(k2+1) |
k2 |
∴
1 |
m |
1 |
n |
m+n |
mn |
2 |
p |
②若k不存在,则AB方程为x=-
p |
2 |
综合①②有
1 |
m |
1 |
n |
2 |
p |
∵p=2
∴
1 |
m |
1 |
n |
故答案为
1 |
m |
1 |
n |
核心考点
举一反三
x2 |
a2 |
y2 |
b2 |