当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点(  )A.(0,2)B.(0,-2)C.(2,0)D.(4,0)...
题目
题型:不详难度:来源:
一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点(  )
A.(0,2)B.(0,-2)C.(2,0)D.(4,0)
答案
∵抛物线y2=8x的准线方程为x=-2,
∴由题可知动圆的圆心在y2=8x上,且恒与抛物线的准线相切,
由定义可知,动圆恒过抛物线的焦点(2,0),
故选C.
核心考点
试题【一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点(  )A.(0,2)B.(0,-2)C.(2,0)D.(4,0)】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),则|PA|+|PF|取最小值时P点的坐标为______.
题型:不详难度:| 查看答案
若点P到直线y=-1的距离比它到点(0,3)的距离小2,则点P的轨迹方程为 (  )
A.x2=12yB.y2=12xC.x2=4yD.x2=6y
题型:不详难度:| 查看答案
平面上动点M到定点F(3,0)的距离比M到直线l:x+1=0的距离大2,求动点M满足的方程.
题型:不详难度:| 查看答案
到定点(2,1)和定直线x+2y-4=0的距离相等的点的轨迹是______.
题型:不详难度:| 查看答案
动点P到定点A(0,-2)的距离比到定直线l:y=10的距离小8,则动点P的轨迹为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.