当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,...
题目
题型:不详难度:来源:
如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.

(1)求证:MA⊥MB;
(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.
答案
(1)见解析(2)
解析
(1)证明:设直线AB的方程为y=kx,A(x1,y1),B(x2,y2),
x2-kx-1=0,所以x1+x2=k,x1x2=-1.
·=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-k2-1+k2+1=0,
∴MA⊥MB.
(2)设直线MA的方程为y=k1x-1,MB的方程为y=k2x-1,k1k2=-1.
解得
∴A(k1-1),同理可得B(k2-1),
∴S1|MA||MB|=|k1k2|.
解得
∴D,同理可得E.
∴S2|MD||ME|=.
=λ=.故λ的取值范围是.
核心考点
试题【如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
已知动圆过定点(1,0),且与直线相切.
(1)求动圆圆心的轨迹方程;
(2)设是轨迹上异于原点的两个不同点,直线的倾斜角分别为,①当时,求证直线恒过一定点
②若为定值,直线是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,直线y=m与抛物线y2=4x交于点A,与圆(x-1)2+y2=4的实线部分交于点B,F为抛物线的焦点,则三角形ABF的周长的取值范围是 (      )
A.(2,4)B.(4,6)C.[2,4]D.[4,6]

题型:不详难度:| 查看答案
抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为(      )
A.2B.3C.4D.5

题型:不详难度:| 查看答案
抛物线上的一点到焦点的距离为1,则点的纵坐标是               .
题型:不详难度:| 查看答案
如图,抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,垂足为,则的面积是( )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.