当前位置:高中试题 > 数学试题 > 双曲线的定义与方程 > 已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程....
题目
题型:不详难度:来源:
已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.
答案
M的轨迹方程是=1(x≥
解析
设动圆M的半径为r,

则由已知|MC1|=r+
|MC2|=r-
∴|MC1|-|MC2|=2.
又C1(-4,0),C2(4,0),
∴|C1C2|=8,∴2<|C1C2|.
根据双曲线定义知,点M的轨迹是以C1(-4,0)、C2(4,0)为焦点的双曲线的右支.
∵a=,c=4,
∴b2=c2-a2=14,
∴点M的轨迹方程是=1(x≥).
核心考点
试题【已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.】;主要考察你对双曲线的定义与方程等知识点的理解。[详细]
举一反三
与双曲线=1有共同的渐近线,且过点(-3,2);求双曲线的标准方程.
题型:不详难度:| 查看答案
双曲线C:="1" (a>0,b>0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使·=0,求此双曲线离心率的取值范围.
题型:不详难度:| 查看答案
已知双曲线C:-=1(0<<1)的右焦点为B,过点B作直线交双曲线C的右支于M、N两点,试确定的范围,使·=0,其中点O为坐标原点.
题型:不详难度:| 查看答案
由双曲线=1上的一点P与左、右两焦点F1、F2构成△PF1F2,求△PF1F2的内切圆与边F1F2的切点坐标.
题型:不详难度:| 查看答案
已知定点A(0,7)、B(0,-7)、C(12,2),以C为一个焦点作过A、B的椭圆,求另一焦点F的轨迹方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.