当前位置:高中试题 > 数学试题 > 双曲线的定义与方程 > 由双曲线=1上的一点P与左、右两焦点F1、F2构成△PF1F2,求△PF1F2的内切圆与边F1F2的切点坐标....
题目
题型:不详难度:来源:
由双曲线=1上的一点P与左、右两焦点F1、F2构成△PF1F2,求△PF1F2的内切圆与边F1F2的切点坐标.
答案
N的坐标为(3,0)
解析
由双曲线方程知a=3,b=2,c=.

如右图,根据从圆外一点引圆的两条切线长相等及双曲线定义可得
|PF1|-|PF2|=2a.
由于|NF1|-|NF2|=|PF1|-|PF2|="2a.                    " ①
|NF1|+|NF2|="2c.                           " ②
由①②得|NF1|==a+c.
∴|ON|=|NF1|-|OF1|=a+c-c=a=3.
故切点N的坐标为(3,0).
根据对称性,当P在双曲线左支上时,切点N的坐标为(-3,0).
核心考点
试题【由双曲线=1上的一点P与左、右两焦点F1、F2构成△PF1F2,求△PF1F2的内切圆与边F1F2的切点坐标.】;主要考察你对双曲线的定义与方程等知识点的理解。[详细]
举一反三
已知定点A(0,7)、B(0,-7)、C(12,2),以C为一个焦点作过A、B的椭圆,求另一焦点F的轨迹方程.
题型:不详难度:| 查看答案
已知点N(1,2),过点N的直线交双曲线x2-=1于A、B两点,且=+).
(1)求直线AB的方程;
(2)若过N的直线交双曲线于C、D两点,且·=0,那么A、B、C、D四点是否共圆?为什么?
题型:不详难度:| 查看答案
如图所示,倾斜角为的直线经过抛物线y2=8x的焦点F,且与抛物线交于A、B两点.
(1)求抛物线焦点F的坐标及准线l的方程;
(2)若为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2为定值, 
并求此定值.
题型:不详难度:| 查看答案
已知双曲线=1的右焦点是F,右顶点是A,虚轴的上端点是B,·=6-4,∠BAF=150°.
(1)求双曲线的方程;
(2)设Q是双曲线上的点,且过点F、Q的直线l与y轴交于点M,若+2=0,求直线l的斜率.
题型:不详难度:| 查看答案
已知双曲线的渐近线的方程为2x±3y=0,
(1)若双曲线经过P(,2),求双曲线方程;
(2)若双曲线的焦距是2,求双曲线方程;
(3)若双曲线顶点间的距离是6,求双曲线方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.