当前位置:高中试题 > 数学试题 > 椭圆的几何性质 > 过椭圆的左焦点作直线交椭圆于A、B两点,若存在直线使坐标原点O恰好在以AB为直径的圆上,则椭圆的离心率取值范围是(  )A.(0,]B.[,1)C.(0,]D....
题目
题型:不详难度:来源:
过椭圆的左焦点作直线交椭圆于A、B两点,若存在直线使坐标原点O恰好在以AB为直径的圆上,则椭圆的离心率取值范围是(  )
答案
核心考点
试题【过椭圆的左焦点作直线交椭圆于A、B两点,若存在直线使坐标原点O恰好在以AB为直径的圆上,则椭圆的离心率取值范围是(  )A.(0,]B.[,1)C.(0,]D.】;主要考察你对椭圆的几何性质等知识点的理解。[详细]
举一反三
A.(0,]B.[,1)C.(0,]D.[,1)
我们把由半椭圆数学公式(x≥0)与半椭圆数学公式(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F0,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为1的等边三角,则a,b的值分别为(  )
题型:不详难度:| 查看答案
A.数学公式B.数学公式C.5,3D.5,4
椭圆 (a>b>0)顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于|AF|,则椭圆的离心率e=(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
A.B.C.D.
(文)椭圆
x2
a2
+
y2
b2
=1  (a>b>0)
的焦点为F1,F2,若椭圆上有且仅有两点B1,B2满足∠F1B1F2=∠F1B2F2=120°,则a:b=______.
(理)过圆锥曲线焦点F的直线被曲线截得的弦称为焦点弦,若抛物线y2=2px(p>0)的焦点将焦点弦分成长为m,n的两段,则有结论
1
m
+
1
n
=
2
p
.借助获得这一结论的思想方法可以得到:若椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的一个焦点将焦点弦分成长为m,n的两段,则
1
m
+
1
n
=______.
若点F1,F2为椭圆的焦点,P为椭圆上的点,满足∠F1PF2=90°,则△F1PF2的面积为(  )
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.1B.2C.数学公式D.4