当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > (本小题满分14分) 已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A...
题目
题型:不详难度:来源:
(本小题满分14分) 已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。
(Ⅰ)求椭圆E的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求的取值范围。
答案
(Ⅰ)椭圆方程为
(Ⅱ)
(Ⅲ)的取值范围是
解析
解:(Ⅰ)设椭圆方程为,由
椭圆方程为 
(2)由题意知,直线的斜率存在且不为零    
消去并化简整理,得
根据题意,,解得 
同理得 
(Ⅲ)设 那么
 同理得,即
 
    
的取值范围是
核心考点
试题【(本小题满分14分) 已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知椭圆的中心在原点,长轴在轴上,离心率为,且上一点到的两焦点的距离之和为,则椭圆的方程为          .
题型:不详难度:| 查看答案
(12分)已知圆的方程为,椭圆的方程,且离心率为,如果相交于两点,且线段恰为圆的直径.
(Ⅰ)求直线的方程和椭圆的方程;
(Ⅱ)如果椭圆的左、右焦点分别是,椭圆上是否存在点,使得,如果存在,请求点的坐标,如果不存在,请说明理由.
题型:不详难度:| 查看答案
椭圆的两个焦点为,点在椭圆上,且.
(1)求椭圆的方程;
(2)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.
题型:不详难度:| 查看答案
是椭圆上的任意一点,是椭圆的两个焦点,且∠,则该椭圆的离心率的取值范围是             
题型:不详难度:| 查看答案
已知椭圆a>b>0)的中心在原点,焦点在轴上,离心率为,点F1F2分别是椭圆的左、右焦点,在直线x=2上的点P(2, )满足|PF2|=|F1F2|,直线ly=kx+m与椭圆C交于不同的两点A B.

(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C存在点Q,满足O为坐标原点),求实数l的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.