当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > (本小题满分12分)已知椭圆E:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上(1)求椭圆E的方...
题目
题型:不详难度:来源:
(本小题满分12分)
已知椭圆E:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上
(1)求椭圆E的方程;
(2)设l1l2是过点G(,0)且互相垂直的两条直线,l1交E于A,B两点,l2交E于C,D两点,求l1的斜率k的取值范围;
(3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?
若经过,求出该定点坐标;若不经过,请说明理由。
答案



解析

核心考点
试题【(本小题满分12分)已知椭圆E:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上(1)求椭圆E的方】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
.已知椭圆短轴端点为A,B.点P是椭圆上除A,B外任意一点,则直线PA,PB的斜率之积为       .
题型:不详难度:| 查看答案
..(本小题满分12分)
已知直线与椭圆相交于A,B两点,线段AB中点M在直线上.
(1)求椭圆的离心率;
(2)若椭圆右焦点关于直线l的对称点在单位圆上,求椭圆的方程.
题型:不详难度:| 查看答案
直线经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为
A.B.C.D.

题型:不详难度:| 查看答案
已知椭圆=1(a>b>0)与双曲线=1有相同的焦点,则椭圆的离心率为
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分13分)
已知过椭圆C:=1(a>b>0)右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点;又函数图象的一条对称轴的方程是.
(1)求椭圆C的离心率e与直线AB的方程;
(2)对于任意一点M∈C,试证:总存在角θ(θ∈R)使等式+成立.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.