当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 设椭圆恒过定点,则椭圆的中心到准线的距离的最小值      ▲   ....
题目
题型:不详难度:来源:
设椭圆恒过定点,则椭圆的中心到准线的距离的
最小值      ▲   .
答案

解析
由题有,准线方程为,所以中心到准线的距离为,即


所以,即
核心考点
试题【设椭圆恒过定点,则椭圆的中心到准线的距离的最小值      ▲   .】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
(本小题满分12分)已知椭圆(0<b<2)的离心率等于抛物线(p>0).
(1)若抛物线的焦点F在椭圆的顶点上,求椭圆和抛物线的方程;
(II)若抛物线的焦点F为,在抛物线上是否存在点P,使得过点P的切线与椭圆相交于A,B两点,且满足?若存在,求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知椭圆的右焦点为,设短轴的一个端点为,原点到直线的距离为,过原点和轴不重合的直线与椭圆相交于两点,且.
(1) 求椭圆的方程;
(2) 是否存在过点的直线与椭圆相交于不同的两点且使得成立?若存在,试求出直线的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
.已知椭圆的中心在原点,焦点在坐标轴上,与过点P(1,2)且斜率为-2的直线相交所得的弦恰好被P平分,则此椭圆的离心率是       
题型:不详难度:| 查看答案
椭圆的一个焦点是(0,2),那么(  )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
(本题满分10分)设过点的直线与过点的直线相交于点M,
的斜率的乘积为定值,求点M的轨迹方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.