当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足(1)求椭圆C的方程;(2)是否存在直线,当直线交椭圆于P、Q两...
题目
题型:不详难度:来源:
已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足(1)求椭圆C的方程;
(2)是否存在直线,当直线交椭圆于P、Q两点时,使点F恰为的垂心(三角形三条高的交点)?若存在,求出直线方程;若不存在,请说明理由。
答案
(1);(2)当时,△不存在,故舍去
时,所求直线存在,且直线的方程为
解析
第一问中利用根据题意得,

,又


第二问中,假设存在直线交椭圆于两点,且为△的垂心,

因为,故.                    …………7分
于是设直线的方程为
,结合韦达定理并由题意应有,又,得到结论。
解:根据题意得,

,又


故椭圆方程为.                      …………5分
(Ⅱ)假设存在直线交椭圆于两点,且为△的垂心,

因为,故.                    …………7分
于是设直线的方程为

,得, 且,.   ……9分
由题意应有,又



整理得
解得.                              …………11分
经检验,当时,△不存在,故舍去
时,所求直线存在,且直线的方程为
…………12分
核心考点
试题【已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足(1)求椭圆C的方程;(2)是否存在直线,当直线交椭圆于P、Q两】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知椭圆的焦距为,则实数          
题型:不详难度:| 查看答案
如图,已知椭圆的焦点和上顶点分别为,我们称为椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆,判断是否相似,如果相似则求出的相似比,若不相似请说明理由;
(2)若与椭圆相似且半短轴长为的椭圆为,且直线与椭圆为相交于两点(异于端点),试问:当面积最大时,是否与有关?并证明你的结论.
(3)根据与椭圆相似且半短轴长为的椭圆的方程,提出你认为有价值的相似椭圆之间的三种性质(不需证明);
题型:不详难度:| 查看答案
已知命题“椭圆的焦点在轴上”;
命题上单调递增,若“”为假,求的取值范围.
题型:不详难度:| 查看答案
已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。
题型:不详难度:| 查看答案
已知椭圆的左右焦点分别为F1,F2,离心率为e,若椭圆上存在点P,使得,则该离心率e的取值范围是__________;
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.