当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。(1)若点P的坐标为,求直线的方程。(2)设椭圆的左焦点为F,请问:当点P运动时,是否...
题目
题型:不详难度:来源:
点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。
(1)若点P的坐标为,求直线的方程。
(2)设椭圆的左焦点为F,请问:当点P运动时,是否总是相等?若是,请给出证明。
答案
(1)直线的方程;(2)当点P运动时,总是相等的.证明详见试题解析.
解析

试题分析:(1)先设点的坐标为则可得过点的切线方程,由两点确定一条直线可得的方程;(2)当点运动时,总是相等的.利用向量夹角公式通过计算验证.
试题解析:(1)设点的坐标为则过点的切线方程分别为.因为点在切线上,所以.同理.故直线的方程.                                      5分
(2)当点运动时,总是相等的.设点的坐标为,则由(1)知,
同理.                               13分
核心考点
试题【点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。(1)若点P的坐标为,求直线的方程。(2)设椭圆的左焦点为F,请问:当点P运动时,是否】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知椭圆的两个焦点和上下两个顶点是一个边长为2且∠F1B1F2的菱形的四个顶点.
(1)求椭圆的方程;
(2)过右焦点F2 ,斜率为)的直线与椭圆相交于两点,A为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.求证:为定值.
题型:不详难度:| 查看答案
是2和8的等比中项,则圆锥曲线的离心率是(   )
A.B.C.D.

题型:不详难度:| 查看答案
已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.

(1)求椭圆方程.
(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.
题型:不详难度:| 查看答案
在平面直角坐标系中,已知点为动点,且直线与直线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线相交于不同的两点.若点轴上,且,求点的纵坐标的取值范围.
题型:不详难度:| 查看答案
已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.