当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 设直线l:2x+y-2=0与椭圆x2+=1的交点为A,B,点P是椭圆上的动点,则使得△PAB的面积为的点P的个数为   ....
题目
题型:不详难度:来源:
设直线l:2x+y-2=0与椭圆x2+=1的交点为A,B,点P是椭圆上的动点,则使得△PAB的面积为的点P的个数为   .
答案
4
解析
【思路点拨】先求出弦长|AB|,进而求出点P到直线AB的距离,再求出与l平行且与椭圆相切的直线方程,最后数形结合求解.
由题知直线l恰好经过椭圆的两个顶点(1,0),(0,2),故|AB|=,要使
△PAB的面积为,即··h=,所以h=.联立y=-2x+m与椭圆方程x2+=1得8x2-4mx+m2-4=0,令Δ=0得m=±2,即平移直线l到y=-2x±2时与椭圆相切,它们与直线l的距离d=都大于,所以一共有4个点符合要求.
核心考点
试题【设直线l:2x+y-2=0与椭圆x2+=1的交点为A,B,点P是椭圆上的动点,则使得△PAB的面积为的点P的个数为   .】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知椭圆C:+=1(a>b>0)的一个顶点A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程.
(2)当△AMN的面积为时,求k的值.
题型:不详难度:| 查看答案
已知中心在原点的椭圆C的一个焦点为F(4,0),长轴端点到较近焦点的距离为1,A(x1,y1),B(x2,y2)(x1≠x2)为椭圆上不同的两点.
(1)求椭圆C的方程.
(2)若x1+x2=8,在x轴上是否存在一点D,使||=||?若存在,求出D点的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴的最小值为(  )
A.1B.C.2D.2

题型:不详难度:| 查看答案
若已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是(  )
A.(0,+∞)B.(,+∞)
C.(,+∞)D.(,+∞)

题型:不详难度:| 查看答案
设P为椭圆+=1(a>b>0)上的任意一点,F1为椭圆的一个焦点,则|PF1|的取值范围为     .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.