当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 椭圆的右准线方程是     ....
题目
题型:不详难度:来源:
椭圆的右准线方程是     
答案
x=4
解析

试题分析:本题知识点简单,就是利用椭圆的准线方程为,得到右准线方程为
核心考点
试题【椭圆的右准线方程是     .】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系xOy中,椭圆C:的离心率为,短轴长是2.

(1)求a,b的值;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当时,求k的取值范围.
题型:不详难度:| 查看答案
P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.
题型:不详难度:| 查看答案
离心率为的椭圆与双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构成等差数列,则双曲线的离心率等于(      )
A    B.   C.    D.
题型:不详难度:| 查看答案
如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,已知点A为椭圆=1的右顶点,点D(1,0),点P、B在椭圆上,.
 
(1) 求直线BD的方程;
(2) 求直线BD被过P、A、B三点的圆C截得的弦长;
(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.