当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 离心率为的椭圆与双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构成等差数列,则双曲线的离心率等于(      )A    ...
题目
题型:不详难度:来源:
离心率为的椭圆与双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构成等差数列,则双曲线的离心率等于(      )
A    B.   C.    D.
答案
C
解析

试题分析:
设椭圆,双曲线,则,椭圆顶点、焦点到双曲线渐近线的距离依次为,从而,所以,即,所以.选C.
核心考点
试题【离心率为的椭圆与双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构成等差数列,则双曲线的离心率等于(      )A    】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,已知点A为椭圆=1的右顶点,点D(1,0),点P、B在椭圆上,.
 
(1) 求直线BD的方程;
(2) 求直线BD被过P、A、B三点的圆C截得的弦长;
(3) 是否存在分别以PB、PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.

(1)求椭圆C的标准方程;
(2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
题型:不详难度:| 查看答案
如图,正方形CDEF内接于椭圆,且它的四条边与坐标轴平行,正方形GHPQ的顶点G,H在椭圆上,顶点P,Q在正方形的边EF上.且CD=2PQ=

(1)求椭圆的方程;
(2)已知点M(2,1),平行于OM的直线l在y轴上的截距为m(m:≠0),l交椭圆于A,B两个不同点,求证:直线MA,MB与x轴始终围成一个等腰三角形.
题型:不详难度:| 查看答案
已知直线2x+y-4=0过椭圆E:的右焦点F2,且与椭圆E在第一象限的交点为M,与y轴交于点N,F1是椭圆E的左焦点,且|MN|=|MF1|,则椭圆E的方程为   .
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.