当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形(1)求椭圆的方程;(2)过点的动直线交椭圆C于A、B两点,试问:在坐标平...
题目
题型:不详难度:来源:
已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形
(1)求椭圆的方程;
(2)过点的动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q?若存在求出点Q的坐标;若不存在,请说明理由
答案
(1)椭圆方程为;(2)存在定点,使以AB为直径的圆恒过点 
解析

试题分析:(1)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,等腰直角三角形斜边长为2,即,故,由此可得椭圆方程 (2)首先考虑与坐标轴平行的特殊情况,当与x轴平行时,以AB为直径的圆的方程为;当与y轴平行时,以AB为直径的圆的方程为,解方程组求出这两个圆的交点:
若存在定点Q,则Q的坐标只可能为 
接下来就一般情况证明为所求 设直线,则,将与椭圆方程联立,利用韦达定理得:,代入上式证明其等于0即可
试题解析:(1)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,
又斜边长为2,即,
椭圆方程为                                  (4分)
(2)当与x轴平行时,以AB为直径的圆的方程为;
与y轴平行时,以AB为直径的圆的方程为
,故若存在定点Q,则Q的坐标只可能为    (6分)
下证明为所求:
若直线斜率不存在,上述已经证明 设直线,
,
,                           (8分)

       (10分)

,即以AB为直径的圆恒过点                  (13分)
注: 此题直接设,得到关于的恒成立问题也可求解
核心考点
试题【已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形(1)求椭圆的方程;(2)过点的动直线交椭圆C于A、B两点,试问:在坐标平】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知椭圆的左、右焦点分别为, 焦距为2,过作垂直于椭圆长轴的弦长为3
(1)求椭圆的方程;
(2)若过点的动直线交椭圆于A、B两点,判断是否存在直线使得为钝角,若存在,求出直线的斜率的取值范围
题型:不详难度:| 查看答案
如图,点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切与点

(1)求的值及椭圆的标准方程;
(2)设动点满足,其中是椭圆上的点,为原点,直线的斜率之积为,求证:为定值。
题型:不详难度:| 查看答案
已知椭圆的焦距为2,且过点.
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为,过点的直线与椭圆C交于两点.
①当直线的倾斜角为时,求的长;
②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.
题型:不详难度:| 查看答案
已知椭圆C的两个焦点是)和,并且经过点,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1l2l1交抛物线E于点ABl2交抛物线E于点GH,求的最小值.
题型:不详难度:| 查看答案
若两曲线在交点P处的切线互相垂直,则称该两曲线在点P处正交,设椭圆与双曲线在交点处正交,则椭圆的离心率为(  )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.