当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆C:=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上,(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=k...
题目
题型:山西省月考题难度:来源:
已知椭圆C:=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上,
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,试问直线l是否过定点?若过,求该定点的坐标。
答案

解:(1)由椭圆C的离心率e=
椭圆C的左、右焦点分别为F1(-c,0)、F2(c,0),
又点F2在线段PF1的中垂线上,
∴|F1F2|=|PF2|,
∴(2c)2=(2+(2-c)2,解得c=1,
∴a2=2,b2=1,
∴椭圆的方程为+y2=1;
2)由题意,直线MN的方程为y=kx+m,
消去y得(2k2+1)x2+4kmx+2m2-2=0,
设M(x1,y1),N(x2,y2),


由已知α+β=π得

化简,得2kx1x2+(m-k)(x1+x2)-2m=0,
∴2k·,解得m=-2k,
∴直线MN的方程为y=k(x-2),
因此直线MN过定点,该定点的坐标为(2,0)。

核心考点
试题【已知椭圆C:=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上,(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=k】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
长为3的线段AB的两个端点A,B分别在x,y轴上移动,点P在直线AB上且满足
(Ⅰ)求点P的轨迹的方程;
(Ⅱ)记点P轨迹为曲线C,过点Q(2,1)任作直线l交曲线C于M,N两点,过M作斜率为的直线l′交曲线C于另一点R。求证:直线NR与直线OQ的交点为定点(O为坐标原点),并求出该定点。
题型:浙江省期末题难度:| 查看答案
设A,B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上,
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于异于A的点M,证明:△MBP为钝角三角形。
题型:北京期末题难度:| 查看答案
设椭圆C:,F是右焦点,l是过点F的一条直线(不与y轴平行),交椭圆于A、B两点,l′是AB的中垂线,交椭圆的长轴于一点D,则的值是(    )。
题型:浙江省月考题难度:| 查看答案
设椭圆 C1(a>b>0)的一个顶点与抛物线 C2:x2=4y的焦点重合,F1,F2分别是椭圆的左、右焦点,离心率e=,过椭圆右焦点F2的直线l与椭圆C交于M,N两点,
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线l,使得,若存在,求出直线l的方程;若不存在,说明理由;
(Ⅲ)若AB是椭圆C经过原点O的弦,MN∥AB,求证:为定值。
题型:浙江省月考题难度:| 查看答案
设直线l:2x+y+2=0关于原点对称的直线为l′,若l′与椭圆的交点为A,B,点P为椭圆上的动点,则使△PAB的面积为的点P的个数为

[     ]

A.1
B.2
C.3
D.4
题型:贵州省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.