题目
题型:模拟题难度:来源:
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,试问直线l是否过定点?若过,求该定点的坐标。
答案
解:(1)由椭圆C的离心率e=,
椭圆C的左、右焦点分别为F1(-c,0)、F2(c,0),
又点F2在线段PF1的中垂线上,
∴|F1F2|=|PF2|,
∴(2c)2=()2+(2-c)2,解得c=1,
∴a2=2,b2=1,
∴椭圆的方程为+y2=1;
2)由题意,直线MN的方程为y=kx+m,
由消去y得(2k2+1)x2+4kmx+2m2-2=0,
设M(x1,y1),N(x2,y2),
则,
且,,
由已知α+β=π得,
即,
化简,得2kx1x2+(m-k)(x1+x2)-2m=0,
∴2k·,解得m=-2k,
∴直线MN的方程为y=k(x-2),
因此直线MN过定点,该定点的坐标为(2,0)。
核心考点
试题【已知椭圆C:=1(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上,(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:y=k】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
(Ⅰ)求椭圆E的方程;
(Ⅱ)已知两点Q(-2,0),M(0,1)及椭圆G:,过点Q作斜率为k的直线l交椭圆G于H,K两点,设线段HK的中点为N,连结MN,试问当k为何值时,直线MN过椭圆G的顶点?
(Ⅲ)过坐标原点O的直线交椭圆W:于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC并延长交椭圆W于B,求证:PA⊥PB。
(1)求椭圆的标准方程;
(2)设直线y=kx+m(k≠0)与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围。