当前位置:高中试题 > 数学试题 > 椭圆 > 设P是椭圆x2a2+y2=1   (a>1)短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值....
题目
题型:不详难度:来源:
设P是椭圆
x2
a2
+y2=1   (a>1)
短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.
答案
由已知得到P(0,1)或P(0,-1)
由于对称性,不妨取P(0,1)
设Q(x,y)是椭圆上的任一点,
则|PQ|=


x2+(y-1)2
,①
又因为Q在椭圆上,
所以,x2=a2(1-y2),
|PQ|2=a2(1-y2)+y2-2y+1=(1-a2)y2-2y+1+a2
=(1-a2)(y-
1
1-a2
2-
1
1-a2
+1+a2.②
因为|y|≤1,a>1,若a≥


2
,则|
1
1-a2
|≤1,
所以如果它包括对称轴的x的取值,那么就是顶点上取得最大值,
即当-1≤
1
1-a2
≤1时,
在y=
1
1-a2
时,|PQ|取最大值
a2


a2-1
a2-1

如果对称轴不在y的取值范围内的话,那么根据图象给出的单调性来求解.
即当
1
1-a2
<-1时,则当y=-1时,|PQ|取最大值2.
核心考点
试题【设P是椭圆x2a2+y2=1   (a>1)短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知一点P的坐标是(4,-2),直线L的方程是y-x+5=0,曲线C的方程是
(x+1)2
2
+
(y-1)2
4
=1
,求经过P点而与L垂直的直线和曲线C的交点的坐标.
题型:不详难度:| 查看答案
已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,过点F2向∠F1PF2的外角平分线作垂线,垂足为M,则点M的轨迹是(   )
题型:朝阳区一模难度:| 查看答案
题型:东城区二模难度:| 查看答案
A.圆B.椭圆
C.直线D.双曲线的一支
已知点A(-2,0),B(2,0),若点P(x,y)在曲线
x2
16
+
y2
12
=1
上,则|PA|+|PB|=______.
一系列椭圆都以一定直线l为准线,所有椭圆的中心都在定点M,且点M到l的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai(i=1,2,…,n),则a1+a2+…+an=(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.B.C.D.
已知椭圆C1的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,离心率为


3
2
,两个焦点分别为F1和F2,椭圆C1上一点到F1和F2的距离之和为12,椭圆C2的方程为
x2
(a-2)2
+
y2
b2-1
=1
,圆C3:x2+y2+2kx-4y-21=0(k∈R)的圆心为点Ak
(I)求椭圆C1的方程;
(II)求△AkF1F2的面积;
(III)若点P为椭圆C2上的动点,点M为过点P且垂直于x轴的直线上的点,
|OP|
|OM|
=e
(e为椭圆C2的离心率),求点M的轨迹.