当前位置:高中试题 > 数学试题 > 椭圆 > 椭圆x2a2+y2b2=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为____...
题目
题型:不详难度:来源:
椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为______.
答案
设以椭圆的短轴为直径的圆与线段PF1相切于点M,连结OM、PF2
∵M、O分别为PF1、F1F2的中点,
∴MOPF2,且|PF2|=2|MO|=2b,
又∵线段PF1与圆O相切于点M,可得OM⊥PF1
∴PF1⊥PF2
∴|PF1|=


4c2-4b2
=2


c2-b2

∴|PF1|+|PF2|=2


c2-b2
+2b=2a,
化简得2ab=a2-c2+2b2=3b2
∴b=
2
3
a,c=


5
3
a,
∴离心率为e=
c
a
=


5
3

故答案为:


5
3

核心考点
试题【椭圆x2a2+y2b2=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为____】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
如果椭圆
x2
36
+
y2
9
=1
的弦被点(4,-2)平分,则这条弦所在的直线方程是______.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为e=


2
2
,左、右焦点分别为F1、F2,点P的坐标为(2,


3
),且F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如果圆E:(x-
1
2
2+y2=r2被椭圆C所覆盖,求圆的半径r的最大值.
题型:不详难度:| 查看答案
直线l与椭圆
x2
4
+
y2
3
=1
相交于两点A,B,弦AB的中点为(-1,1),则直线l的方程为______.
题型:不详难度:| 查看答案
如图,抛物线形拱桥的顶点距水面4m时,测得拱桥内水面宽为16m;当水面升高3m后,拱桥内水面的宽度为______m.
题型:不详难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


6
3
,长轴长为2


3
,直线l:y=kx+m交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)若m=1,且


OA


OB
=0
,求k的值(O点为坐标原点);
(Ⅲ)若坐标原点O到直线l的距离为


3
2
,求△AOB面积的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.