当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆C的左、右焦点坐标分别是,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P,(1)求椭圆C的方程;(2)若圆P与x轴相切...
题目
题型:期末题难度:来源:
已知椭圆C的左、右焦点坐标分别是,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P,
(1)求椭圆C的方程;
(2)若圆P与x轴相切,求圆心P的坐标。
答案
解:(1)因为,且,所以
所以椭圆C的方程为
(2)由题意知

所以圆P的半径为
解得
所以点P的坐标是(0,)。
核心考点
试题【已知椭圆C的左、右焦点坐标分别是,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P,(1)求椭圆C的方程;(2)若圆P与x轴相切】;主要考察你对椭圆等知识点的理解。[详细]
举一反三

椭圆C:的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=,|PF2|=
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过圆x2+y2+4x-2y=0的圆心M,交椭圆C于A,B两点,且A,B关于点M对称,求直线l的方程。

题型:北京高考真题难度:| 查看答案
如图,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于P,则点P的轨迹是
[     ]
A.椭圆
B.双曲线
C.抛物线
D.圆
题型:0113 期末题难度:| 查看答案
已知椭圆的两焦点为F1(-,0),F2,0),离心率e=
(1)求此椭圆的方程;
(2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值。
题型:期末题难度:| 查看答案
已知椭圆C:的离心率为,其左、右焦点分别为F1,F2,点P是坐标平面内一点,且|OP|=(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点且斜率为k的动直线交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标;若不存在,说明理由。
题型:0113 期末题难度:| 查看答案
如图,椭圆与过点 A(2,0)、B(0,1)的直线有且只有一个公共点T,且椭圆的离心率
(1)求椭圆的方程;
(2)设F1,F2分别为椭圆的左、右焦点,M为线段AF2的中点,求证:∠ATM=∠AF1T。
题型:浙江省高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.