当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆C:(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(1)求椭圆C的方程;(2)若过点M(2,0)的直线与椭圆C...
题目
题型:模拟题难度:来源:
已知椭圆C:(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A,B,设P为椭圆上一点,且满足(O为坐标原点),当时,求实数t取值范围。
答案
解:(1)由题意知
所以,即a2=2b2
又因为
所以a2=2,b2=1
故椭圆C的方程为
(2)由题意知直线AB的斜率存在
设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y)
得(1+2k2)x2-8k2x+8k2-2=0



∴(x1+x2,y1+y2)=t(x,y),


∵点P在椭圆上,

∴16k2=t2(1+2k2




∴(4k2-1)(14k2+13)>0,


∵16k2=t2(1+2k2),


∴实数t取值范围为(-2,-)∪(,2)。
核心考点
试题【已知椭圆C:(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(1)求椭圆C的方程;(2)若过点M(2,0)的直线与椭圆C】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知椭圆C的中心在坐标原点,焦点F1,F2在x轴上,焦距为2,并且椭圆C上的点与焦点最短的距离是1。
(1)求椭圆C的离心率及标准方程;
(2)若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,则k与m之间应该满足怎样的关系?
(3)在(2)的条件下,且以MN为直径的圆经过椭圆的右顶点A,求证:直线l必过定点,并求出定点的坐标。
题型:辽宁省模拟题难度:| 查看答案
椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率

(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线的方程。
题型:专项题难度:| 查看答案
已知椭圆C的两个焦点分别为F1(-1,0),F2(1,0),点在椭圆C上,抛物线E以椭圆C的中心为顶点,F2为焦点。
(1)求椭圆C的方程;
(2)直线l过点F2,且交y轴于D点,交抛物线E于A,B两点,
①若F1B⊥F2B,求|AF2|-|BF2|的值;
②试探究:线段AB与F2D的长度能否相等?如果|AB|=|F2D|,求直线l的方程。
题型:专项题难度:| 查看答案
设点M(x,y)到直线x=4的距离与它到定点(1,0)的距离之比为2,并记点M的轨迹曲线为C,
(Ⅰ)求曲线C的方程;
(Ⅱ)设过定点(0,2)的直线l与曲线C交于不同的两点E,F,且∠EOF=90°(其中O为坐标原点),求直线l的斜率k的值;
(Ⅲ)设A(2,0),B(0,)是曲线C的两个顶点,直线y=mx(m>0)与线段AB相交于点D,与椭圆相交于E,F两点,求四边形AEBF面积的最大值。
题型:河南省模拟题难度:| 查看答案
已知椭圆方程为(a>b>0),它的一个顶点为M(0,1),离心率e=
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值。
题型:山西省模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.