当前位置:高中试题 > 数学试题 > 椭圆 > 在直角坐标系x0y中,椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象...
题目
题型:不详难度:来源:
在直角坐标系x0y中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求M点的坐标及椭圆C1的方程;
(Ⅱ)已知直线lOM,且与椭圆C1交于A,B两点,提出一个与△OAB面积相关的问题,并作出正确解答.
答案
(Ⅰ)由抛物线C2:y2=4x 知 F2(1,0),设M(x1,y1),(x1>0,y1>0),M在C2上,且|MF2|=
5
3
,所以x1+1=
5
3
,得x1=
2
3
,代入y2=4x,得y1=
2


6
3

所以M(
2
3
2


6
3
).                                                     
M在C1上,由已知椭圆C1的半焦距 c=1,于是





4
9a2
+
8
3b2
=1
b2=a2-1

消去b2并整理得 9a4-37a2+4=0,解得a=2(a=
1
3
不合题意,舍去).
故椭圆C1的方程为
x2
4
+
y2
3
=1
.                                      
(Ⅱ)由y=


6
(x-m)得


6
x-y-


6
m=0,所以点O到直线l的距离为
d=
|


6
m|


7
,又|AB|=
4


7
9


9-2m2

所以S△OAB=
1
2
|AB|d=
2


6
9


-2m4+9m2

-
3


2
2
<m<
3


2
2
且m≠0.                                      
下面视提出问题的质量而定:
如问题一:当△OAB面积为
2


42
9
时,求直线l的方程.(y=


6
(x±1))      
问题二:当△OAB面积取最大值时,求直线l的方程.(y=


6
(x±
3
2
))
核心考点
试题【在直角坐标系x0y中,椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4+2


2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=
4
3
上动点P(x0,y0)(x0-y0≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.
题型:不详难度:| 查看答案
椭圆
x2
2
+y2=1
上任意一点与右焦点连线段中点的轨迹方程______.
题型:不详难度:| 查看答案
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l过P(-
1
2
1
2
)
且与椭圆相交于A,B两点,当P是AB的中点时,求直线l的方程.
题型:不详难度:| 查看答案
已知与向量


e
=(1,


3
)平行的直线l1过点A(0,-2


3
),椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的中心关于直线l1的对称点在直线x=
a2
c
(c2=a2-b2)上,且直线l1过椭圆C的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-2,0)的直线l2交椭圆C于M,N两点,若∠MON≠
π
2
,且(


OM


ON
)•sin∠MON=
4


6
3
,(O为坐标原点),求直线l12的方程.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左顶点和右焦点分别为A,F,右准线为直线m,圆D:x2+y2-6y-4=0.
(1)若点A在圆D上,且椭圆C的离心率为


3
2
,求椭圆C的方程;
(2)若直线m上存在点Q,使△AFQ为等腰三角形,求椭圆C的离心率的取值范围;
(3)若点P在(1)中的椭圆C上,且过点P可作圆D的两条切线,切点分别为M、N,求弦长MN的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.