当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,其左、右焦点分别为F1,F2,点P(x0,y0)是坐标平面内一点,且|OP|=72,PF1•PF...
题目
题型:长春一模难度:来源:
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


2
2
,其左、右焦点分别为F1,F2,点P(x0,y0)是坐标平面内一点,且|OP|=


7
2


PF1


PF2
=
3
4
(O为坐标原点).
(1)求椭圆C的方程;
(2)过点S(0,-
1
3
)
且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.
答案
(1)设P(x0,y0),F1(-c,0),F2(c,0),
则由|OP|=


7
2
x20
+
y20
=
7
4



PF1


PF2
=
3
4
(-c-x0,-y0)•(c-x0,-y0)=
3
4

x20
+
y20
-c2=
3
4

所以c=1
又因为
c
a
=


2
2
,所以a2=2,b2=1

因此所求椭圆的方程为:
x2
2
+y2=1

(2)动直线l的方程为:y=kx-
1
3






y=kx-
1
3
x2
2
+y2=1
(2k2+1)x2-
4
3
kx-
16
9
=0

设A(x1,y1),B(x2,y2).
x1+x2=
4k
3(2k2+1)
x1x2=-
16
9(2k2+1)

假设在y轴上存在定点M(0,m),满足题设,则


MA
=(x1y1-m),


MB
=(x2y2-m)



MA


MB
=x1x2+(y1-m)(y2-m)=x1x2+y1y2-m(y1+y2)+m2

=x1x2+(kx1-
1
3
)(kx2-
1
3
)-m(kx1-
1
3
+kx2-
1
3
)+m2

=(k2+1)x1x2-k(
1
3
+m)(x1+x2)+m2+
2
3
m+
1
9

=-
16(k2+1)
9(2k2+1)
-k(
1
3
+m)
4k
3(2k2+1)
+m2+
2
3
m+
1
9

=
18(m2-1)k2+(9m2+6m-15)
9(2k2+1)

由假设得对于任意的k∈R•


MA


MB
=0
恒成立,





m2-1=0
9m2+6m-15=0
解得m=1.
因此,在y轴上存在定点M,使得以AB为直径的圆恒过这个点,
点M的坐标为(0,1)
核心考点
试题【已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,其左、右焦点分别为F1,F2,点P(x0,y0)是坐标平面内一点,且|OP|=72,PF1•PF】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知离心率为


3
2
的椭圆C1的顶点A1,A2恰好是双曲线
x2
3
-y2=1
的左右焦点,点P是椭圆上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)试判断k1•k2的值是否与点P的位置有关,并证明你的结论;
(Ⅲ)当k1=
1
2
时,圆C2:x2+y2-2mx=0被直线PA2截得弦长为
4


5
5
,求实数m的值.
设计意图:考察直线上两点的斜率公式、直线与圆相交、垂径定理、双曲线与椭圆的几何性质等知识,考察学生用待定系数法求椭圆方程等解析几何的基本思想与运算能力、探究能力和推理能力.第(Ⅱ)改编自人教社选修2-1教材P39例3.
题型:韶关一模难度:| 查看答案
椭圆(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点(0,3)到椭圆上的点的最远距离为5则此椭圆的方程是(  )
题型:不详难度:| 查看答案
A.B.
C.D.
设α∈(0,),方程=1表示焦点在x轴上的椭圆,则α∈(  )A
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.B.(C.(0,
D.[
P为椭圆
x2
25
+
y2
9
=1
上一点,F1、F2为左右焦点,若∠F1PF2=60°
(1)求△F1PF2的面积;
(2)求P点的坐标.
已知焦点在x轴上,对称轴为坐标轴的椭圆的离心率为
1
2
,且以该椭圆上的点和椭圆的两焦点F1,F2为顶点的三角形的周长为6,
(1)求椭圆的标准方程;
(2)设过点N(1,0)斜率为k直线l与椭圆相交与A、B两点,若-
18
7


NA


NB
≤-
12
5
,求直线l斜率k的取值范围.