当前位置:高中试题 > 数学试题 > 椭圆 > 在Rt△ABC中,∠CAB=90°,AB=2,AC=22,一曲线E过C点,动点P在曲线E上运动,且保持|PA|+|PB|的值不变.(1)建立适当的坐标系,求曲线...
题目
题型:不详难度:来源:
在Rt△ABC中,∠CAB=90°,AB=2,AC=


2
2
,一曲线E过C点,动点P在曲线E上运动,且保持|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)直线l:y=x+t与曲线E交于M,N两点,求四边形MANB的面积的最大值.
答案
(1)以AB为x轴,以AB中点为原点O建立直角坐标系.
∵|PA|+|PB|=|CA|+|CB|=


2
2
+


22+(


2
2
)2
=2


2

∴动点轨迹为椭圆,且a=


2
,c=1,从而b=1.
∴方程为
x2
2
+y2=1
(2)将y=x+t代入方程
x2
2
+y2=1,得3x2+4tx+2t2-2=0.
设M(x1,y1)、N(x2,y2),
∴△=16t2-4•3•(2t2-2)>0①,
x1+x2=-
4t
3
②,
x1x2=
2t2-2
3
③,
由①得t2<3,
∴SMANB=
1
2
|AB||y1-y2|=|y1-y2|=|x1-x2|=
2
3


6-2t2
核心考点
试题【在Rt△ABC中,∠CAB=90°,AB=2,AC=22,一曲线E过C点,动点P在曲线E上运动,且保持|PA|+|PB|的值不变.(1)建立适当的坐标系,求曲线】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知圆C:(x+2)2+y2=24,定点A(2,0),M为圆C上一动点,点P在AM上,点N在CM上(C为圆心),且满足
.
AM
= 2
.
AP
.
NP
-
.
AM
=0
,设点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)过点B(m,0)作倾斜角为
5
6
π
的直线l交曲线E于C、D两点.若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m的取值范围.
题型:不详难度:| 查看答案
已知曲线C的方程为kx2+(4-k)y2=k+1(k∈R).
(1)若曲线C是椭圆,求k的取值范围;
(2)若曲线C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;
(3)满足(2)的双曲线上是否存在两点P、Q关于直线l:y=x-1对称,若存在,求出过P、Q的直线方程;若不存在,说明理由.
题型:不详难度:| 查看答案
已知中心在原点,焦点在坐标轴上的椭圆过M(1,
4


2
3
),N(-
3


2
2


2
)两点.
(1)求椭圆的方程;
(2)在椭圆上是否存在点P(x,y)到定点A(a,0)(其中0<a<3)的距离的最小值为1,若存在,求出a的值及点P的坐标;若不存在,请给予证明.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,其相应于焦点F(2,0)的准线方程为x=4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知过点F1(-2,0)倾斜角为θ的直线交椭圆C于A,B两点.
求证:|AB|=
4


2
2-cos2θ

(Ⅲ)过点F1(-2,0)作两条互相垂直的直线分别交椭圆C于点A、B和D、E,求|AB|+|DE|的最小值.
题型:安徽难度:| 查看答案
已知椭圆C1
x2
a2
+
y2
b2
=1
的左、右两个焦点为F1、F2,离心率为
1
2
,又抛物线C2:y2=4mx(m>0)与椭圆C1有公共焦点F2(1,0).
(1)求椭圆和抛物线的方程;
(2)设直线l经过椭圆的左焦点F1且与抛物线交于不同两点P、Q,且满足


F1P


F1Q
,求实数λ的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.