当前位置:高中试题 > 数学试题 > 圆与圆的位置关系 > 在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.(1)判断两圆的位置关系;(2)求直线m的方程,使...
题目
题型:不详难度:来源:
在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.
(1)判断两圆的位置关系;
(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C2截得的弦长是6.
答案
(1)由于圆C1的圆心C1(-3,1),半径r1=2;圆C2的圆心C2(4,5),半径r2=2.可得两圆的圆心距C1C2=


72+42
=


65
>r1+r2
∴两圆相离.
(2)由题意得,所求的直线过两圆的圆心,即为连心线所在直线,
用两点式求得得连心线所在直线方程为:
y-1
5-1
=
x+3
4+3
,即 4x-7y+19=0.
核心考点
试题【在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.(1)判断两圆的位置关系;(2)求直线m的方程,使】;主要考察你对圆与圆的位置关系等知识点的理解。[详细]
举一反三
已知圆C1:x2+y2-4x+2y=0与圆C2:x2+y2-2y-4=0.
(1)求证两圆相交;
(2)求两圆公共弦所在直线的方程;
(3)求过两圆的交点且圆心在直线2x+4y=1上的圆的方程.
题型:不详难度:| 查看答案
已知圆x2+y2-4ax+2ay+20(a-1)=0.
(1)求证对任意实数a,该圆恒过一定点;
(2)若该圆与圆x2+y2=4相切,求a的值.
题型:不详难度:| 查看答案
圆:x2+y2-4x+6y=0和圆:x2+y2-6x=0交于A,B两点,则直线AB的方程是(   )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.x+3y=0B.3x+y=0C.3x-y=0D.3y-5x=0
以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位,圆O1的方程为ρ=4cosθ,圆O2的参数方程为





x=2cosθ
y=-2+2sinθ
(为参数),求两圆的公共弦的长度.
已知⊙O方程为x2+y2=4,定点A(4,0),求过点A且和⊙O相切的动圆圆心的轨迹.