当前位置:高中试题 > 数学试题 > 圆与圆的位置关系 > 已知⊙O方程为x2+y2=4,定点A(4,0),求过点A且和⊙O相切的动圆圆心的轨迹....
题目
题型:不详难度:来源:
已知⊙O方程为x2+y2=4,定点A(4,0),求过点A且和⊙O相切的动圆圆心的轨迹.
答案
设动圆圆心为P(x,y),因为动圆过定点A,所以|PA|即动圆半径.
当动圆P与⊙O外切时,|PO|=|PA|+2;
当动圆P与⊙O内切时,|PO|=|PA|-2.
综合这两种情况,得||PO|-|PA||=2.
将此关系式坐标化,得
|


x2+y2
-


(x-4)2+y2
|=2.
化简可得(x-2)2-
y2
3
=1.
核心考点
试题【已知⊙O方程为x2+y2=4,定点A(4,0),求过点A且和⊙O相切的动圆圆心的轨迹.】;主要考察你对圆与圆的位置关系等知识点的理解。[详细]
举一反三
两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系是(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.外切B.内切C.相交D.外离
已知圆C1:x2+y2-2x-4y+m=0,直线x+2y-4=0与圆C1相交于M,N两点,以MN为直径作圆C2
(Ⅰ)求圆C2的圆心C2坐标;
(Ⅱ)过原点O的直线l与圆C1、圆C2都相切,求直线l的方程.
圆C1:x2+y2-10x-10y=0和圆C2:x2+y2+6x+2y-40=0的公共弦所在的直线方程为______.
分别为ρ=4cosθ和ρ=-8sinθ的两个圆的圆心距为______.
(坐标系与参数方程选做题)曲线





x=cosα
y=1+sinα
为参数)与曲线ρ2-2ρcosθ=0的交点个数为______.