当前位置:高中试题 > 数学试题 > 点到直线的距离 > 已知圆C:x2+(y-2)2=5,直线l:mx-y+1=0.(1)求证:对m∈R,直线l与圆C总有两个不同交点;(2)若圆C与直线l相交于A,B两点,求弦AB的...
题目
题型:不详难度:来源:
已知圆C:x2+(y-2)2=5,直线l:mx-y+1=0.
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)若圆C与直线l相交于A,B两点,求弦AB的中点M的轨迹方程.
答案
(1)见解析    (2)x2+(y-)2
解析
(1)解法一:直线mx-y+1=0恒过定点(0,1),且点(0,1)在圆C:x2+(y-2)2=5的内部,
所以直线l与圆C总有两个不同交点.
解法二:联立方程,消去y并整理,得
(m2+1)x2-2mx-4=0.
因为Δ=4m2+16(m2+1)>0,所以直线l与圆C总有两个不同交点.
解法三:圆心C(0,2)到直线mx-y+1=0的距离d=≤1<
所以直线l与圆C总有两个不同交点.
(2)设A(x1,y1),B(x2,y2),M(x,y),联立直线与圆的方程得(m2+1)x2-2mx-4=0,
由根与系数的关系,得x=
由点M(x,y)在直线mx-y+1=0上,当x≠0时,得m=,代入x=,得x[()2+1]=
化简得(y-1)2+x2=y-1,即x2+(y-)2.
当x=0,y=1时,满足上式,故M的轨迹方程为x2+(y-)2.
核心考点
试题【已知圆C:x2+(y-2)2=5,直线l:mx-y+1=0.(1)求证:对m∈R,直线l与圆C总有两个不同交点;(2)若圆C与直线l相交于A,B两点,求弦AB的】;主要考察你对点到直线的距离等知识点的理解。[详细]
举一反三
已知圆A:x2+y2-2x-2y-2=0.
(1)若直线l:ax+by-4=0平分圆A的周长,求原点O到直线l的距离的最大值;
(2)若圆B平分圆A的周长,圆心B在直线y=2x上,求符合条件且半径最小的圆B的方程.
题型:不详难度:| 查看答案
已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,且直线l与圆C交于A、B两点.
(1)若|AB|=,求直线l的倾斜角;
(2)若点P(1,1)满足2,求此时直线l的方程.
题型:不详难度:| 查看答案
直线ax+by+c=0与圆x2+y2=9相交于两点M、N,若c2=a2+b2,则·(O为坐标原点)等于(  )
A.-7B.-14C.7D.14

题型:不详难度:| 查看答案
已知两点A(0,-3),B(4,0),若点P是圆x2+y2-2y=0上的动点,则△ABP面积的最小值为(  )
A.6B.C.8D.

题型:不详难度:| 查看答案
已知圆和圆
(1)判断圆和圆的位置关系;
(2)过圆的圆心作圆的切线,求切线的方程;
(3)过圆的圆心作动直线交圆于A,B两点.试问:在以AB为直径的所有圆中,是否存在这样的圆,使得圆经过点?若存在,求出圆的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.